Skip to main content
Log in

Vibration attenuation and dynamic control of piezolaminated plates with coupled electromechanical actuation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Vibration attenuation and dynamic control of the piezolaminated plate actuated with coupled electromechanical loading are aimed and achieved in the present work. Efficient finite element methodology with higher-order shear deformation theory is assisted to blend the effects of shear strains in the computational model. An isoperimetric eight-noded rectangular element is implemented through linear electric potential distribution along the thickness to set up the relations. Coupled electromechanical loading is considered in the formulation to consider the piezoelectric sensing and actuation mechanism. Piezolaminated plates with both cross-ply and angle-ply orientation of bonded substrate lamina are considered in the analysis. Vibration responses of multilayered composite plates with surface-mounted piezolaminates are evaluated for open-circuit and closed-circuit boundary conditions of the electric field. Results obtained from the analysis are well revealed for frequencies of various modes of simply supported piezolaminated plates. Dynamic vibrational response and effect of the control gain (Gv) in terms of velocity feedback on the dynamic characteristics of a piezoelectric laminated plate are examined. Another aim of proposing this FE model is to demonstrate the effect of placement of fibers in a different orientation for the PVDF layer to achieve active damping, and attenuation of vibrations of the laminated composite plate is also achieved and demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)

    MATH  Google Scholar 

  2. Haftka, R.T., Adelman, H.M.: Selection of actuator locations for static shape control of large space structures by heuristic integer programming. Comput. Struct. 20(1–3), 575–85 (1985)

    Google Scholar 

  3. Lee, C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators, part I: governing equations and reciprocal relationships. J. Acoust. Soc. Am. 87, 1144–1158 (1990)

    Google Scholar 

  4. Li, S., Cao, W., Cross, L.E.: The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. J. Appl. Phys. 69(10), 7219–7224 (1991)

    Google Scholar 

  5. Tzou, H.S., Ye, R.: Piezothermoelasticity and precision control of active piezoelectric laminates. ASME J. Vib. Acoust. 114, 489–495 (1994)

    Google Scholar 

  6. Pai, P.F., Nafeh, A.H., Oh, K., Mook, D.T.: A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. Int. J. Solids Struct. 30(12), 1603–1630 (1993)

    MATH  Google Scholar 

  7. Devasia, S., Tesfay, M., Padu, B., Bayo, E.A.J.: Piezoelectric actuator design for vibration suppression: placement and sizing. J. Guid. Control Dyn. 16, 859–64 (1993)

    Google Scholar 

  8. Tiersten, H.F.: Electroelastic equations for electroded thin plates subject to large deriving voltages. J. Appl. Phys. 74(5), 3389–3393 (1993)

    Google Scholar 

  9. Gu, Y., Clark, R.L., Fuller, C.R.: Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidyne fluoride modal sensors. J. Vib. Acoust. 116, 303–308 (1994)

    Google Scholar 

  10. Koconis, D.B., Kollar, L.P., Springer, G.S.: Shape control of composite plates and shells with embedded actuators. J. Compos. Mater. 28(3), 415–458 (1994)

    Google Scholar 

  11. Mitchell, J.A., Reddy, J.N.: A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids Struct. 32, 2345–2367 (1995)

    MATH  Google Scholar 

  12. Bent, A.A., Hagood, N.W.: Anisotropic actuation with piezoelectric fiber composites. J. Intell. Mater. Syst. Struct. 6, 338–349 (1995)

    Google Scholar 

  13. Ghosh, K., Batra, R.C.: Shape control of plates using piezoceramic elements. AIAA J. 33(7), 1354–1357 (1995)

    Google Scholar 

  14. Icardi, U., Sciuva, M.D.: Large-deflection and stress analysis of multilayered plates with induced-strain actuators. Smart Mater. Struct. 5, 140–164 (1996)

    Google Scholar 

  15. Batra, R.C., Liang, X.Q.: The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators. Comput. Struct. 63(2), 203–216 (1997)

    MATH  Google Scholar 

  16. Wang, Z., Chen, S., Han, W.: The static shape control for intelligent structures. Finite Elem. Anal. Des. 26, 303–314 (1997)

    MATH  Google Scholar 

  17. Saravanos, D.A., Heyliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite elements for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct. 34(3), 359–378 (1997)

    MATH  Google Scholar 

  18. Berlin, A.A., Chase, J., Geoffrey, Y., Mark, M., Brian, J., Olivier, M., Jacobsen, S.C.: 1998 MEMS-based control of structural dynamic instability. J. Intell. Mater. Syst. Struct. 9(7), 574–586 (1997)

    Google Scholar 

  19. Mueller, V., Zhang, Q.M.: Shear response of lead zirconate titanate piezoceramics. J. Appl. Phys. 83(7), 3754–3761 (1998)

    Google Scholar 

  20. Hong, C.H., Chopra, I.: Modeling and validation of induced strain actuation of composite coupled plates. AIAA J. 37, 372–377 (1999)

    Google Scholar 

  21. Sunar, M., Rao, S.S.: Recent advances in sensing and control of flexible structures via piezoelectric technology. Appl. Mech. Rev. 52(1), 1–16 (1999)

    Google Scholar 

  22. Lim, Y.H., Gopinathan, S.V., Varadan, V.V., Varadan, V.K.: Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control. Smart Mater. Struct. 8(3), 324–37 (1999)

    Google Scholar 

  23. Faria, A.R., Almeida, S.F.M.: Enhancement of pre-buckling behavior of composite beams with geometric imperfections using piezoelectric actuators. Compos. B Eng. 30, 43–50 (1999)

    Google Scholar 

  24. Chee, C., Tong, L., Steven, G.: A buildup voltage distribution (BVD) algorithm for shape control of smart plate structures. Comput. Mech. 26, 115–128 (2000)

    MATH  Google Scholar 

  25. Stobener, U., Gaul, L.: Modal vibration control for PVDF coated plates. J. Intell. Mater. Syst. Struct. 11, 283–293 (2000)

    Google Scholar 

  26. Sung, Y., Kam, Y.S.: A finite element formulation for composite laminates with smart constrained layer damping. Adv. Eng. Softw. 31, 529–537 (2000)

    MATH  Google Scholar 

  27. Ray, M.C., Oh, J., Baz, A.: Active constrained layer damping of thin cylindrical shells. J. Sound Vib. 240(5), 921–935 (2001)

    Google Scholar 

  28. Ro, J., Baz, A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8, 861–876 (2002)

    MATH  Google Scholar 

  29. Sun, D.C., Tong, L.: Vibration control of plates using discretely distributed piezoelectric quasi-modal actuators/sensors. AIAA J. 39, 1766–1772 (2001)

    Google Scholar 

  30. von Wagner, U., Hagedorn, P.: Piezo-beam systems subjected to weak electric field: experiments and modelling of non-linearities. J. Sound Vib. 256(5), 861–872 (2002)

    Google Scholar 

  31. Chopra, I.: Review of state of art of smart structures and integrated systems. AIAA J. 40(11), 2154–2187 (2002)

    Google Scholar 

  32. Ray, M.C.: Optimal control of laminated shells with piezoelectric sensor and actuator layers. AIAA J. 41, 1151–1157 (2003)

    Google Scholar 

  33. Xu, S.X., Koko, T.S.: Finite element analysis and design of actively con- trolled piezoelectric smart structures. Finite Elem. Anal. Des. 40(3), 241–262 (2004)

    Google Scholar 

  34. Thakkar, D., Ganguli, R.: Helicopter vibration reduction in forward flight with induced-shear based piezoceramic actuation. Smart Mater. Struct. 13(3), 599–608 (2004)

    Google Scholar 

  35. Moita, J.M.S., Correia, I.F.P., Soares, C.M.M., Soares, C.A.M.: Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators. Comput. Struct. 82(17–19), 1349–1358 (2004)

    MathSciNet  Google Scholar 

  36. Jiang, J., Batra, R.C.: Effect of electromechanical coupling on static deformations and natural frequencies. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 52(7), 1079–1093 (2005)

    Google Scholar 

  37. Kogl, M., Bucalem, M.L.: A family of piezoelectric MITC plate elements. Comput. Struct. 83(15–16), 1277–1297 (2005)

    Google Scholar 

  38. Peng, F., Ng, A., Hu, Y.R.: Actuator placement optimization and adaptive vibration control of plate smart structures. J. Intell. Mater. Syst. Struct. 16, 263–271 (2005)

    Google Scholar 

  39. Meng, G., Ye, L., Dong, X.J., Wei, K.X.: Closed loop finite element modeling of piezoelectric smart structures. Shock Vib. 13(1), 1–12 (2006)

    Google Scholar 

  40. Dong, X.J., Meng, G., Peng, J.C.: Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and experimental study. J. Sound Vib. 297(3–5), 680–693 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Thakkar, D., Ganguli, R.: Induced shear actuation of helicopter rotor blade for active twist control. Thin-Walled Struct. 45(1), 111–121 (2007)

    Google Scholar 

  42. Civalek, O.: Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach. Finite Elem. Anal. Des. 43, 1013–1022 (2007)

    Google Scholar 

  43. Ray, M.C., Shivakumar, J.: Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite. Thin-Walled Struct. 47, 178–189 (2009)

    Google Scholar 

  44. De Gaspari, A., Ricci, S., Riccobene, L., Scotti, A.: Active aeroelastic control over a multisurface wing: modeling and wind-tunnel testing. AIAA J. 47(9), 1995–2010 (2009)

    Google Scholar 

  45. Civalek, O.: Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl. Math. Model. 33, 3825–3835 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Kapuria, S., Yasin, M.Y.: Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model. J. Sound Vib. 329(16), 3247–3265 (2010)

    Google Scholar 

  47. Gupta, V., Sharma, M., Thakur, N., Singh, S.P.: Active vibration control of a smart plate using a piezoelectric sensor-actuator pair at elevated temperatures. Smart Mater. Struct. 20(10), 105023 (2011)

    Google Scholar 

  48. Bodaghi, M., Saidi, A.R.: Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. Appl. Mech. 81(11), 1555–1572 (2011)

    MATH  Google Scholar 

  49. Bodaghi, M., Saidi, A.R.: Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Arch. Appl. Mech. 81(6), 765–780 (2011)

    MATH  Google Scholar 

  50. Hosseini, Hashemi Sh, Atashipour, S.R., Fadaee, M.: An exact analytical approach for in-plane and out-of plane free vibration analysis of thick laminated transversely isotropic plates. Arch. Appl. Mech. 82(5), 677–698 (2012)

    MATH  Google Scholar 

  51. Bajoria, K.M., Wankhade, R.L.: Free vibration of simply supported piezolaminated composite plates using finite element method. Adv. Mater. Res. 587, 52–56 (2012)

    Google Scholar 

  52. Wankhade, R.L., Bajoria, K.M.: Buckling analysis of piezolaminated plates using higher order shear deformation theory. Int. J. Compos. Mater. 3, 92–99 (2013)

    Google Scholar 

  53. Bilgen, O., Friswell, M.I.: Implementation of a continuous inextensible-surface piezocomposite airfoil. J. Aircr. 50(2), 508–518 (2013)

    Google Scholar 

  54. Parashar, S.K., von Wagner, U., Hagedorn, P.: Finite element modeling of nonlinear vibration behavior of piezo-integrated structures. Comput. Struct. 119, 37–47 (2013)

    Google Scholar 

  55. Grasso, E., Totar, N., Naso, D.: Piezoelectric self sensing actuators for highvoltage excitation. Smart Mater. Struct. 22(6), 065018 (2013)

    Google Scholar 

  56. Damanpack, A.R., Bodaghi, M., Aghdam, M.M., Shakeri, M.: Active control of geometrically non-linear transient response of sandwich beams with a flexible core using piezoelectric patches. Compos. Struct. 100, 517–531 (2013)

    Google Scholar 

  57. Phung-Van, P., Nguyen-Thoi, T., Le-Dinh, T., Nguyen-Xuan, H.: Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Mater. Struct. 22(095026), 1–18 (2013)

    Google Scholar 

  58. Chien, H., Thai, S., Kulasegaram, Loc V., Tran, H.: Nguyen-Xuan : generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)

    Google Scholar 

  59. Bajoria, K.M., Wankhade, R.L.: Vibration of cantilever piezolaminated beam with extension and shear mode piezo actuators. Proc. SPIE. 9431(943122), 1–6 (2015)

    Google Scholar 

  60. Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M., Nguyen-Xuan, H.: Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Comput. Mater. Sci. 96, 495–505 (2015)

    Google Scholar 

  61. Kapuria S., Yaqoob Yasin, M., Hagedorn, P.: Active vibration control of piezolaminated composite plates considering strong electric field nonlinearity. AIAA J., 1–14 (2015)

  62. Bohlooly, M., Mirzavand, B.: A closed-form solution for thermal buckling of cross-ply piezolaminated plates. Int. J. Struct. Stab. Dyn. 16(3), 1450112 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Ghugal, Y.M., Gajbhiye, P.D.: Bending analysis of thick isotropic plates by using 5th order shear deformation theory. J. Appl. Comput. Mech. 2(2), 80–95 (2016)

    Google Scholar 

  64. Bendine, K., Wankhade, R.L.: Vibration control of FGM piezoelectric plate based on LQR genetic search. Open J. Civ. Eng. 6, 1–7 (2016)

    Google Scholar 

  65. Wankhade, R.L., Bajoria, K.M.: Shape control and vibration analysis of piezolaminated plates subjected to electro-mechanical loading. Open J. Civ. Eng. 6, 335–345 (2016)

    Google Scholar 

  66. Datchanamourty, B., Blandford, G.E.: Uncoupled/coupled buckling response of piezothermoelastic composite plates. J. Therm. Stress. 40, 1303–1319 (2017)

    Google Scholar 

  67. Akgöz, Bekir, Civalek, Ömer: A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos. Struct. 176, 1028–1038 (2017)

    Google Scholar 

  68. Wankhade, R.L., Bajoria, K.M.: Numerical optimization of piezolaminated beams under static and dynamic excitations. J. Sci.: Adv. Mater. Dev. 2(2), 255–262 (2017)

    Google Scholar 

  69. Kouider, B., Wankhade, R.L.: Optimal shape control of piezolaminated beams with different boundary condition and loading using genetic algorithm. Int. J. Adv. Struct. Eng. 9(4), 375–384 (2017)

    Google Scholar 

  70. Wankhade, R.L., Bajoria, K.M.: Vibration analysis of piezolaminated plates for sensing and actuating applications under dynamic excitation. Int. J. Struct. Stab. Dyn. 19(1950121), 1–22 (2019)

    MathSciNet  Google Scholar 

  71. Guo, X., Wang, S., Lin, S., Cao, D.: Dynamic responses of a piezoelectric cantilever plate under high-low excitations. Acta. Mech. Sin. 36, 234–244 (2020)

    Google Scholar 

  72. Wankhade, R.L., Niyogi, S.B.: Buckling analysis of symmetric laminated composite plates for various thickness ratios and modes. Innov. Infrastruct. Solut. 5, 65 (2020)

    Google Scholar 

  73. Ebrahimi, F., Barati, M.R., Civalek, O.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)

    Google Scholar 

  74. Wankhade, R.L., Bajoria, K.M.: Stability of simply supported smart piezolaminated composite plates using finite element method. Proc. Int. Conf. Adv. Aeronaut. Mech. Eng. AME 1, 14–19 (2012)

    Google Scholar 

  75. Wankhade, R.L., Bajoria, K.M.: Free vibration and stability analysis of piezolaminated plates using finite element method. Smart Mater. Struct. 22(125040), 1–10 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan L. Wankhade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wankhade, R.L., Bajoria, K.M. Vibration attenuation and dynamic control of piezolaminated plates with coupled electromechanical actuation. Arch Appl Mech 91, 411–426 (2021). https://doi.org/10.1007/s00419-020-01780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01780-6

Keywords

Navigation