Skip to main content
Log in

Variational method for non-conservative instability of a cantilever SWCNT in the presence of variable mass or crack

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present paper, the non-conservative instability of a cantilever single-walled carbon nanotube (SWCNT) through nonlocal theory is investigated. The nanotube is modeled as clamped-free beam carrying a concentrated mass, located at a generic position, or in the presence of crack, and subjected to a compressive axial load, at the free end. Nonlocal Euler–Bernoulli beam theory is used in the formulation and the governing equations of motion and the corresponding boundary conditions are derived using an extended Hamilton’s variational principle. The governing equations are solved analytically. In order to show the sensitivity of the SWCNT to the values of an added mass, or crack and the influence of the nonlocal parameter and nondimensional crack severity coefficient on the fundamental frequencies values, some numerical examples have been performed and discussed. Also, the validity and the accuracy of the proposed analysis have been confirmed by comparing the results with those obtained from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ruoff, R.S., Lorents, D.C.: Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–30 (1995)

    Google Scholar 

  2. Jiang, H., Liu, B., Huang, Y., Hwang, K.C.: Thermal expansion of single wall carbon nanotubes. J Mat. Tech. ASME 126, 265–70 (2004)

    Google Scholar 

  3. Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. Proc. IEEE 91, 1772–84 (2003)

    Google Scholar 

  4. Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A., Ootuka, Y., Alphenaar, B.W.: Carbon nanotube devices for nanoelectronics. Physica B 323, 107–14 (2002)

    Google Scholar 

  5. Lau, K.Y., Chipara, M., Ling, H.Y., Hui, D.: Carbon nanotube devices for nanoelectronics. Composites B 35, 95–101 (2004)

    Google Scholar 

  6. An, K.H., Jeong, S.Y., Hwang, H.R., Lee, Y.H.: Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv. Mat. 16(12), 1005–09 (2004)

    Google Scholar 

  7. Eringen, A.C.: On differential equations of non local elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54, 4703–10 (1983)

    Google Scholar 

  8. Eringen, A.C.: Nonlocal Continuum Fields Theories. Springer, New York (2002)

    MATH  Google Scholar 

  9. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Google Scholar 

  10. Ghannadpour, S.A.M., Mohammadi, B., Fazilati, J.: Bending buckling and vibration problems of nonlocal Euler beams using Ritz method. Comput. Struct. 96, 584–589 (2013)

    Google Scholar 

  11. Pradhan, S.C., Phadicar, J.K.: Bending buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory. Struct. Eng. Mech. Int. J. 33(2), 193–213 (2009)

    Google Scholar 

  12. Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Google Scholar 

  13. De Rosa, M.A., Lippiello, M.: Free vibration analysis of DWCNTs using CDM and Rayleigh–Schimdt based on nonlocal Euler–Bernoulli beam theory. Sci. World J. 2014, 1–12 (2014)

    Google Scholar 

  14. De Rosa, M.A., Lippiello, M.: Nonlocal frequenvy analysis of embedded single-walled carbon nanotube using the Differential Quadrature Method. Comput. Part B Eng. 84, 41–51 (2016)

    Google Scholar 

  15. De Rosa, M.A., Lippiello, M.: Nonlocal Timoshenko frequency analysis of single-walled carbon nanotube with attached mass: An alternative hamiltonian approach. Comput. Part B Eng. 111, 409–418 (2017)

    Google Scholar 

  16. Ansari, R., Sahmani, S.: Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun. Nonlinear Sci. Numer. Simul. 17, 1965–1979 (2012)

    MathSciNet  Google Scholar 

  17. Lee, H.L., Hsu, J.C., Chang, W.J.: Frequency shift of carbon nanotube-based mass sensors using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774–1778 (2010)

    Google Scholar 

  18. Aydogdu, M., Filiz, S.: Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 43, 1229–1234 (2001)

    Google Scholar 

  19. Murmu, T., Adhikari, S.: Nonlocal frequency analysis of nanoscale biosensors. Sensor Actuators A 173, 41–48 (2012)

    Google Scholar 

  20. Mehdipour, I., Erfani-Moghadam, A., Mehdipour, C.: Application of an electrostatically actuated cantilevered carbon nanotube with an attached mass as a bio-mass sensor. Curr. Appl. Phys. 13, 1463–1469 (2013)

    Google Scholar 

  21. De Rosa, M.A., Lippiello, M.: Hamilton principle for SWCN and a modified approach for nonlocal frequency analysis of nanoscale biosensor. Int. J. Recent Scient. Res. (IJRSR) 6(1), 2355–65 (2015)

    Google Scholar 

  22. De Rosa, M.A., Lippiello, M., Hector, D.M., Piovan, M.T.: Nonlocal frequency analysis of nanosensors with different boundary conditions and attached distributed biomolecules: an approximate method. Acta Mech. 227(8), 2323–2342 (2016). https://doi.org/10.1007/s00707-016-1631-4

    Article  MathSciNet  Google Scholar 

  23. Elishakoff, I., Versaci, C., Muscolino, G.: Clamped-Free double-walled carbon nanotube-based mass sensor. Acta Mechanica 219, 29–43 (2011)

    MATH  Google Scholar 

  24. De Rosa, M.A., Franciosi, C.: The influence of an intermediate support on the stability behaviour of cantilever beams subjected to follower forces. J. Sound Vib. 137(1), 107–115 (1990)

    Google Scholar 

  25. De Rosa, M.A., Lippiello, M., Auciello, N.M.: Dynamic stability analysis and DQM for beams with variable cross-section. Mech. Res. Commun. 35, 187–192 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Postma, H.W.C., Sellmeijer, A., Dekker, C.: Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv. Mater. 12(17), 1299–1302 (2000)

    Google Scholar 

  27. Shen, Z.B., Deng, B., Li, X.F., Tang, G.J.: Buckling instability of carbon nanotube atomic force microscope probe clamped in an elastic medium. ASME J. Nanotechnol. Eng. Med. 3(2), 031003–07 (2011)

    Google Scholar 

  28. Suhir, E.: Elastic stability of a cantilever beam (Rod) supported by an elastic foundation, with application to nano-composites. J. Appl. Mech. 79, 011009-1 (2012)

    Google Scholar 

  29. Yoon, J., Ru, C.Q., Mioduchowski, A.: Flow-induced flutter instability of cantilever carbon nanotubes. Int. J. Solids Struct. 43(11–12), 3337–3349 (2006)

    MATH  Google Scholar 

  30. Murmu, T., Pradhan, S.C.: Thermal effects on the stability of embedded carbon nanotubes. Comput. Math. Sci. 47, 721–726 (2010)

    Google Scholar 

  31. Xiang, Y., Wang, C.M., Kitipornchai, S., Wang, Q.: Dynamic instability of nanorods/nanotubes subjected to an end follower force. J. Eng. Mech. ASCE 136(8), 1054–1058 (2010)

    Google Scholar 

  32. Kazemi-Lari, M.A., Fazelzadeh, S.A., Ghavanloo, E.: Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation. Physica E 44, 1623–1630 (2012)

    Google Scholar 

  33. Kazemi-Lari, M.A., Ghavanloo, E., Fazelzadeh, S.A.: Structural instability of carbon nanotubes embedded in viscoelastic medium and subjected to distributed tangential load. J. Mech. Sci. Tech. 27(7), 2085–2091 (2013)

    Google Scholar 

  34. Bahaadini, R., Hosseini, M.: Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field. Microfluid Nanofluid 20(108), 1–14 (2016)

    Google Scholar 

  35. Bahaadini, R., Hosseini, M.: Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comput. Math. Sci. 114, 151–159 (2016)

    Google Scholar 

  36. Loya, J., López-Puente, J., Zaera, R., Fernández-Sáez, J.: Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. J. Appl. Phys. 105, 044309 (2009)

    Google Scholar 

  37. Torabi, K., Nafar, D.J.: An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model. Thin Solid Films 520, 6595–602 (2012)

    Google Scholar 

  38. Joshi, A.Y., Sharma, S.C., Harsha, S.P.: Analysis of crack propagation in fixed-free singlewalled carbon nanotube under tensile loading using XFEM. J. Nanotechnol. Eng. Med. 1, 041008 (2010)

    Google Scholar 

  39. Hsu, J.C., Lee, H.L., Chang, W.J.: Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr. Appl. Phys. 11, 1384–8 (2011)

    Google Scholar 

  40. Hosseini, A.H., Rahmani, O., Nikmehr, M., Fakhari, G.I.: Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sens. Lett. 14, 1019–25 (2016)

    Google Scholar 

  41. Loghmani, M., Yazdi, M.R.H.: An analytical method for free vibration of multi cracked and stepped nonlocal nanobeams based on wave approach. Results Phys. 11, 166–181 (2018)

    Google Scholar 

  42. Murmu, T., Adhikari, S.: Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E 43, 415–422 (2010)

    Google Scholar 

  43. Wang, L.F., Hu, H.Y.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Google Scholar 

  44. Zhang, Y.Q., Liu, G.R., Xie, X.Y.: Free transverse vibrations of double -walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Google Scholar 

  45. De Rosa, M.A., Lippiello, M.: Free vibration analysis of SWCNT using CDM in the presence of nonlocal effect. Int. J. Eng. Inn. Tech. (IJEIT) 4(4), 92–102 (2014)

    Google Scholar 

  46. Bolotin, V.V.: Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lippiello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A—Integration by parts and boundary conditions

Appendix A—Integration by parts and boundary conditions

A series of integration by part can be conducted on the terms of Eq. (7), leading to:

$$\begin{aligned}&\int _0^{\gamma \text {L}}\left[ \int _{t_1}^{t_2}\rho \text {A}\frac{\partial v_1(z,t)}{\partial t} \delta \frac{\partial v_1(z,t)}{\partial t}\text {dt}\right] \text {dz}\nonumber \\&\quad =\int _0^{\gamma \text {L}}\left[ \rho \text {A} \frac{\partial v_1(z,t)}{\partial t} \delta \text {v}_1(z,t)\right] _{t_1}^{t_2}\text {dz}-\int _0^{\gamma \text {L}}\left[ \int _{t_1}^{t_2}\rho \text {A}\frac{\partial ^2v_1(z,t)}{\partial t^2}\delta \text {v}_1(z,t) \text {dt}\right] \text {dz}\nonumber \\&\int _{\gamma \text {L}}^\text {L}\left[ \int _{t_1}^{t_2}\rho \text {A}\frac{\partial v_2(z,t)}{\partial t} \delta \frac{\partial v_2(z,t)}{\partial t}\text {dt}\right] \text {dz}\nonumber \\&\quad =\int _{\gamma \text {L}}^{\gamma \text {L}}\left[ \rho \text {A}\frac{\partial v_2(z,t)}{\partial t} \delta \text {v}_2(z,t)\right] _{t_1}^{t_2}\text {dz}-\int _{\gamma \text {L}}^\text {L}\left[ \int _{t_1}^{t_2}\rho \text {A}\frac{\partial ^2v_2(z,t)}{\partial t^2}\delta \text {v}_2(z,t) \text {dt}\right] \text {dz}; \end{aligned}$$
(A1)

and

$$\begin{aligned} \int _{t_1}^{t_2}\text {M}\frac{\partial v_1(\gamma \text {L},t)}{\partial t} \delta \frac{\partial v_1(\gamma \text {L},t)}{\partial t}\text {dt}=\left[ \text {M} \frac{\partial v_1(\gamma \text {L},t)}{\partial t} \delta \text {v}_1(\gamma \text {L},t)\right] _{t_1}^{t_2}-\int _{t_1}^{t_2}\text {M}\frac{\partial ^2v_2(\gamma \text {L},t)}{\partial t^2}\delta \text {v}_2(\gamma \text {L},t) \text {dt}; \end{aligned}$$
(A2)

and

$$\begin{aligned}&\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\text {p}\frac{\partial v_1(z,t)}{\partial z} \delta \frac{\partial v_1(z,t)}{\partial z}\text {dz}\right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \text {p} \frac{\partial v_1(z,t)}{\partial z} \delta \text {v}_1(z,t)\right] _0^{\gamma \text {L}}\text {dt}-\left[ \int _0^{\gamma \text {L}}\text {p}\frac{\partial ^2v_1(z,t)}{\partial z^2}\delta \text {v}_1(z,t) \text {dz}\right] \text {dt};\nonumber \\&\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\text {p}\frac{\partial v_2(z,t)}{\partial z} \delta \frac{\partial v_2(z,t)}{\partial z}\text {dz}\right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \text {p} \frac{\partial v_2(z,t)}{\partial z} \delta \text {v}_2(z,t)\right] _{\gamma \text {L}}^\text {L}\text {dt}-\left[ \int _{\gamma \text {L}}^\text {L}\text {p}\frac{\partial ^2v_2(z,t)}{\partial z^2}\delta \text {v}_2(z,t) \text {dz}\right] \text {dt}; \end{aligned}$$
(A3)

and

$$\begin{aligned}&\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\left( -\text {EI}+\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^2v_1(z,t)}{\partial z^2}\delta \frac{\partial ^2v_1(z,t)}{\partial z^2}\text {dz} \right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( -\text {EI}+\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^2v_1(z,t)}{\partial z^2}\delta \frac{\partial v_1(z,t)}{\partial z}\right] _0^{\gamma \text {L}}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\left( -\text {EI} +\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^3v_1(z,t)}{\partial z^3} \delta \frac{\partial v_1(z,t)}{\partial z}\text {dz} \right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( -\text {EI}+\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^2v_1(z,t)}{\partial z^2}\delta \frac{\partial v_1(z,t)}{\partial z}\right] _0^{\gamma \text {L}}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \left( -\text {EI} +\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^3v_1(z,t)}{\partial z^3} \delta \text {v}_1(z,t)\right] _0^{\gamma \text {L}}\text {dt}\nonumber \\&\qquad +\,\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\left( -\text {EI}+\left( e_0a\right) ^2\text {p} \right) \frac{\partial ^4v_1(z,t)}{\partial z^4} \delta v_1(z,t) \text {dz} \right] \text {dt};\nonumber \\&\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\left( -\text {EI}+\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^2v_2(z,t)}{\partial z^2}\delta \frac{\partial ^2v_2(z,t)}{\partial z^2}\text {dz} \right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( -\text {EI}+\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^2v_2(z,t)}{\partial z^2}\delta \frac{\partial v_2(z,t)}{\partial z}\right] _{\gamma \text {L}}^\text {L}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\left( -\text {EI} +\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^3v_2(z,t)}{\partial z^3} \delta \frac{\partial v_2(z,t)}{\partial z}\text {dz} \right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( -\text {EI}+\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^2v_2(z,t)}{\partial z^2}\delta \frac{\partial v_2(z,t)}{\partial z}\right] _{\gamma \text {L}}^\text {L}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \left( -\text {EI} +\left( e_0a\right) ^2\text {p}\right) \frac{\partial ^3v_2(z,t)}{\partial z^3} \delta \text {v}_2(z,t)\right] _{\gamma \text {L}}^\text {L}\text {dt}\nonumber \\&\qquad +\,\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\left( -\text {EI}+\left( e_0a\right) ^2\text {p} \right) \frac{\partial ^4v_2(z,t)}{\partial z^4} \delta v_2(z,t) \text {dz} \right] \text {dt}; \end{aligned}$$
(A4)

and

$$\begin{aligned}&\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\left( e_0a\right) ^2\rho \text {A}\frac{\partial ^2v_1(z,t)}{\partial t^2} \delta \frac{\partial ^2v_1(z,t)}{\partial z^2}\text {dz}\right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( e_0a\right) ^2\rho \text {A}\frac{\partial ^2v_1(z,t)}{\partial t^2}\delta \frac{\partial v_1(z,t)}{\partial z}\right] _0^{\gamma \text {L}}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\left( e_0a\right) ^2\rho \text {A} \frac{\partial ^3v_1(z,t)}{\partial t^2\partial z}\delta \frac{\partial v_1(z,t)}{\partial z} \text {dz} \right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( e_0a\right) ^2\rho \text {A}\frac{\partial ^2v_1(z,t)}{\partial t^2}\delta \frac{\partial v_1(z,t)}{\partial z}\right] _0^{\gamma \text {L}}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \left( e_0a\right) ^2\rho \text {A}\frac{\partial ^3v(z,t)}{\partial t^2\partial z}\delta \text {v}_1(z,t)\right] _0^{\gamma \text {L}}\text {dt}\nonumber \\&\qquad +\,\int _{t_1}^{t_2}\left[ \int _0^{\gamma \text {L}}\left( e_0a\right) ^2\rho \text {A} \frac{\partial ^4v_1(z,t)}{\partial t^2\partial z^2}\delta v_1(z,t) \text {dz} \right] \text {dt};\nonumber \\&\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\left( e_0a\right) ^2\rho \text {A}\frac{\partial ^2v_2(z,t)}{\partial t^2} \delta \frac{\partial ^2v_2(z,t)}{\partial z^2}\text {dz}\right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( e_0a\right) ^2\rho \text {A}\frac{\partial ^2v_2(z,t)}{\partial t^2}\delta \frac{\partial v_2(z,t)}{\partial z}\right] _{\gamma \text {L}}^\text {L}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\left( e_0a\right) ^2\rho \text {A} \frac{\partial ^3v_2(z,t)}{\partial t^2\partial z}\delta \frac{\partial v_2(z,t)}{\partial z} \text {dz} \right] \text {dt}\nonumber \\&\quad =\int _{t_1}^{t_2}\left[ \left( e_0a\right) ^2\rho \text {A}\frac{\partial ^2v_2(z,t)}{\partial t^2}\delta \frac{\partial v_2(z,t)}{\partial z}\right] _{\gamma \text {L}}^\text {L}\text {dt}\nonumber \\&\qquad -\,\int _{t_1}^{t_2}\left[ \left( e_0a\right) ^2\rho \text {A}\frac{\partial ^3v_2(z,t)}{\partial t^2\partial z}\delta \text {v}_2(z,t)\right] _{\gamma \text {L}}^\text {L}\text {dt}\nonumber \\&\qquad +\,\int _{t_1}^{t_2}\left[ \int _{\gamma \text {L}}^\text {L}\left( e_0a\right) ^2\rho \text {A} \frac{\partial ^4v_2(z,t)}{\partial t^2\partial z^2}\delta v_2(z,t) \text {dz} \right] \text {dt}; \end{aligned}$$
(A5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosa, M.A., Lippiello, M., Auciello, N.M. et al. Variational method for non-conservative instability of a cantilever SWCNT in the presence of variable mass or crack. Arch Appl Mech 91, 301–316 (2021). https://doi.org/10.1007/s00419-020-01770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01770-8

Keywords

Navigation