Skip to main content

Advertisement

Log in

Analytical investigation of an energy harvesting shape memory alloy–piezoelectric beam

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work presents an analytical investigation of a cantilever shape memory alloy (SMA)/piezoelectric laminated composite beam subjected to a tip load with possible temperature variation. The beam consists of two piezoelectric layers of identical thickness bonded to a superelastic SMA core exhibiting asymmetric tensile–compressive behavior. Two loading scenarios are considered where either the temperature of the beam or the applied tip load is varied, while the other parameter is fixed. In each case, the load results in deformation of the SMA core and the piezoelectric layers bonded thereto, leading to the generation of an electric charge. The deformation of the SMA material is modeled based on an extended version of the ZM constitutive relations for SMAs that accounts for intrinsic tensile–compressive asymmetry. Geometric and force equilibrium considerations are used to identify the correct sequence in which different solid-phase structures develop within the superelastic core during a complete loading–unloading process. Temperature-dependent moment and shear force equations are then derived and used in investigating the electrical and mechanical properties of the beam. The proposed model is validated against 3D finite element simulations, and the general trend of output voltage variation with temperature is shown to be consistent with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shaw, J., Kyriakides, S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8), 1243–1281 (1995)

    Article  Google Scholar 

  2. Gusarov, B., Gusarova, E., Viala, B., Gimeno, L., Boisseau, S., Cugat, O., Vandelle, E., Louison, B.: Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy. Sens. Actuators A 243, 175–181 (2016)

    Article  Google Scholar 

  3. Kim, H.A., Betts, D.N., Salo, A.I.T., Bowen, C.R.: Shape memory alloy-piezoelectric active structures for reversible actuation of bistable composites. AIAA J. 48, 6 (2010)

    Google Scholar 

  4. Lee, J.K., Taya, M.: Modeling for piezoelectric-shape memory alloy composites. Arch. Appl. Mech. 81, 629–640 (2011)

    Article  MATH  Google Scholar 

  5. Chen, S.Y., Wang, D.H., Han, Z.D., Zhang, C.L., Du, Y.W., Huang, Z.G.: Converse magnetoelectric effect in ferromagnetic shape memory alloy/piezoelectric laminate. Appl. Phys. Lett. 95, 022501 (2009)

    Article  Google Scholar 

  6. Zakharov, D., Gusarov, B., Gusarova, E., Viala, B., Cugat, O., Delamare, J., Gimeno, L.: Combined pyroelectric, piezoelectric and shape memory effects for thermal energy harvesting. J. Phys. Conf. Ser. 476, 012021 (2013)

    Article  Google Scholar 

  7. Oudich, A., Thiebaud, F.: A two-way shape memory alloy-piezoelectric bimorph for thermal energy harvesting. Mech. Mater. 102, 1–6 (2016)

    Article  Google Scholar 

  8. Radousky, H., Qian, F., An, Y., Zeng, Z., Wang, G., Li, Y., Qu, L., Zemanyi, G., Wang, Y.M.: Harvesting Mechanical and Thermal Energy by Combining ZnO Nanowires and NiTi shape memory alloy. Adv. Nano Energy 1(1), 13–20 (2017)

    Google Scholar 

  9. Zakharov, D., Lebedev, G., Cugat, O., Delamare, J., Viala, B., Lafont, T., Gimeno, L., Shelyakov, A.: Thermal energy conversion by coupled shape memory and piezoelectric effects. J. Micromech. Microeng. 22, 094005 (2012). (7pp)

    Article  Google Scholar 

  10. Gao, H.Y., Jiang, S.N., Zhu, D.B., Gao, H.T.: Theoretical analysis of a piezoelectric ceramic tube polarized tangentially for hydraulic vibration energy harvesting. Arch. Appl. Mech. 87, 607–615 (2017)

    Article  Google Scholar 

  11. Kaltenbacher, B., Krejci, P.: Analysis of an optimization problem for a piezoelectric energy harvester. Arch. Appl. Mech. 89, 1103–1122 (2019)

    Article  Google Scholar 

  12. Xia, G., Fang, F., Zhang, M., Wang, Q., Wang, J.: Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester. Arch. Appl. Mech. 89, 2147–2166 (2019)

    Article  Google Scholar 

  13. Mutsuda, H., Tanaka, Y., Patel, R., Doi, Y., Moriyama, Y., Umino, Y.: A painting type of flexible piezoelectric device for ocean energy harvesting. Appl. Ocean Res. 68, 182–193 (2017)

    Article  Google Scholar 

  14. Lee, J.H., Lee, K.J., Choi, E.: Flexural capacity and crack-closing performance of NiTi and NiTiNb shape-memory alloy fibers randomly distributed in mortar beams. Compos. Part B 153, 264–276 (2018)

    Article  Google Scholar 

  15. Kamarian, S., Shakeri, M.: Thermal buckling analysis and stacking sequence optimization of rectangular and skew shape memory alloy hybrid composite plates. Compos. Part B 116, 137–52 (2017)

    Article  Google Scholar 

  16. Jhou, W.T., Wang, C., Ii, S., Hsueh, C.H.: Nanoscaled superelastic behavior of shape memory alloy/metallic glass multilayered films. Compos. Part B 142, 193–9 (2018)

    Article  Google Scholar 

  17. Song, S.H., Lee, H., Lee, J.G., Lee, Y.J., Cho, M., Ahn, S.H.: Design and analysis of a smart soft composite structure for various modes of actuation. Compos. Part. B. 95, 155–65 (2016)

    Article  Google Scholar 

  18. Eunsoo, C., Behzad, M., Dongkyun, K., Jeon, J.S.: A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks. Compos. Part B 137, 140–152 (2018)

    Article  Google Scholar 

  19. Zaki, W., Moumni, Z., Morin, C.: Modeling tensile-compressive asymmetry for superelastic shape memory alloys. Mech. Adv. Mater. Struct. 18(7), 559–564 (2011)

    Article  Google Scholar 

  20. Sozinov, A., Likhachev, A.A., Lanska, N., Ullakko, K.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase Appl. Phys. Lett. 80, 1746–8 (2002)

    Google Scholar 

  21. Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)

    MATH  Google Scholar 

  22. Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1996)

    Google Scholar 

  23. Wang, J., Moumni, Z., Zhang, W., Xu, Y., Zaki, W.: A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation. Smart Mater. Struct. 26(6), 065006 (2017)

    Article  Google Scholar 

  24. Zaki, W., Moumni, Z.: A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55, 2455–2490 (2007)

    Article  MATH  Google Scholar 

  25. Viet, N.V., Zaki, W., Umer, R.: Bending models for superelastic shape memory alloy laminated composite cantilever beams with elastic core layer. Compos. Part B 147(15), 86–103 (2018)

    Article  Google Scholar 

  26. Viet, N.V., Zaki, W., Umer, R.: Analytical model of functionally graded material/shape memory alloy composite cantilever beam under bending. Compos. Struct. 203, 764–776 (2018)

    Article  Google Scholar 

  27. Kessler, S.S., Dunn, C.T.: Optimization of Lamb wave actuating and sensing materials for health monitoring of composite structures. Proc. SPIE 5056, Smart Struct. Mater. (2003)

  28. Viet, N.V., Zaki, W., Umer, R.: Interlaminar shear stress function for adhesively bonded multi-layer metal laminates. Int. J. Adhes. Adhes. 82, 14–20 (2018)

    Article  Google Scholar 

  29. Giddings, P.F., Bowen, C.R., Kim, H.A.: A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. ICCM-17: 17th Int Conf Compos Mater (2019)

  30. Cissé, C., Zaki, W., Gu, X., Ben Zineb, T.: A nonlinear 3D model for iron-based shape memory alloys considering different thermomechanical properties for austenite and martensite and coupling between transformation and plasticity. Mech. Mater. 107, 1–21 (2017)

    Article  Google Scholar 

  31. Gu, X., Zhang, W., Zaki, Z., Moumni, Z.: An extended thermomechanically coupled 3D rate-dependent model for pseudoelastic SMAs under cyclic loading. Smart Mater. Struct. 26(9), 095047 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Khalifa University of Science and Technology Grant No. CIRA-2019-024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zaki.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viet, N.V., Zaki, W. & Umer, R. Analytical investigation of an energy harvesting shape memory alloy–piezoelectric beam. Arch Appl Mech 90, 2715–2738 (2020). https://doi.org/10.1007/s00419-020-01745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01745-9

Keywords

Navigation