Skip to main content
Log in

Strategy for identification of HCP structure materials: study of Ti–6Al–4V under tensile and compressive load conditions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work proposes a new constitutive model that takes into account the asymmetry of Ti–6Al–4V, its microstructural state and its pronounced anisotropy in order to improve the use of this titanium alloy in biomechanics and aeronautics in particular. The choice of the stress directions and their effect on shaping procedures in light of accounting the effect of heat treatment on the behavior of Ti–6Al–4V, hardness and microstructural defects is important. The fracture surfaces of a material specimen subjected to traction/compression is examined using scanning electron microscope. An appropriate choice of the model is necessary through experimental validation. The use of this alloy in the biomechanical field brings into consideration several factors such as different solicitations and uniaxial loads, and tension-compression asymmetry...as well as in the aeronautical field other factors such as material strength and ductility in shaping under certain heat treatment are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Leyens, C., Peters, M.: Titanium and Titanium Alloys Fundamentals and Applications. Wiley, Hoboken (2003)

    Book  Google Scholar 

  2. Searles, T., Tiley, J., Tanner, A., Williams, R., Rollins, B., Lee, E., Kar, S., Banerjee, R., Fraser, H.L.: Rapid characterization of titanium microstructural features for specific modelling of mechanical properties. Meas. Sci. Technol. 16, 60 (2004)

    Article  Google Scholar 

  3. Belhadjsalah, H., Dogui, A., Khalfallah, A., Znaidi, A., Sidoroff, F.: Constitutive parameters identification for elastoplastic materials in finite deformation. J. Phys. IV (Proc.) 105, 3–10 (2003)

    Google Scholar 

  4. Znaidi, A., Daghfas, O., Gahbiche, A., et al.: Identification strategy of anisotropic behavior laws: application to thin sheets of A5. J. Theor. Appl. Mech. 54, 1147–1156 (2016)

    Article  Google Scholar 

  5. Daghfas, O., Znaidi, A., Ben Mohamed, A., et al.: Experimental study on mechanical properties of aluminum alloy under uniaxial tensile test. Int. J. Technol. 4, 662–672 (2017)

    Article  Google Scholar 

  6. Olfa, D., Amna, Z., Amen, G., Rachid, N.: Identification of the anisotropic behavior of an aluminum alloy subjected to simple and cyclic shear tests. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(3), 095440621876294 (2018)

    Google Scholar 

  7. Znaidi, A., Daghfas, O., Toussaint, F., Nasri, R.: Strategy for the identification of anisotropic behavior laws for Ti40 sheets. AMPT2015, Madrid (2015)

    Google Scholar 

  8. Plunkett, B., Cazacu, O., Barlat, F.: Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int. J. Plast 24(5), 847–866 (2008)

    Article  Google Scholar 

  9. Cazacu, O., Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals r. Int. J. Plast. 20(11), 2027–2045 (2004). https://doi.org/10.1016/j.ijplas.2003.11.021

    Article  MATH  Google Scholar 

  10. Cazacu, O., Plunkett, B., Barlat, F.: Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plast. 22, 1171–1194 (2006)

    Article  Google Scholar 

  11. Jiang, S., Jiang, Z., Chen, Q.: Deformation twinning mechanism in hexagonal-close-packed crystals. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-37067

    Article  Google Scholar 

  12. Mills, M.J., Neeraj, T.: Dislocations in Metals and Metallic Alloys Ohio State University, Columbus, Ohio, USA. Available online 1 January 2003. Encyclopedia of Materials, Science and Technology (2 edn) pp. 2278–2291 (2001)

  13. Harbaoui, R., Znaidi, A., Nasri, R.: Modeling of titanium alloys by an identification strategy: biomechanical application. Revue des Composites et des Matériaux Avancés 27(1–2), 73–86 (2017). https://doi.org/10.3166/rcma.2017.00005

    Article  Google Scholar 

  14. Manopulo, N., Raemy, C., Hora, P.: On the modelling of strength differential and anisotropy exhibited by titanium. J. Phys Conf. Ser. 734(3), 032051 (2016). https://doi.org/10.1088/1742-6596/734/3/032051. August

    Article  Google Scholar 

  15. Kurukuri, S., Worswick, M.: Modeling of strength differential effects in HCP sheet materials. In: Conference: ASME 2014 International Manufacturing Science and Engineering. American Manufacturing Research Conference, June (2014). https://doi.org/10.1115/MSEC2014-4134

  16. Zhang, K., Badreddine, H., Labergere, C., Saanouni, K.: Modeling of anisotropic and asymmetric behavior of magnesium alloys at elevated temperature coupled with ductile damage. J. Phys. Conf. Ser. 896, 0120 (2017)

    Google Scholar 

  17. Barlat, F., Brem, D.L.J.: A six components yield function for anisotropic materials. Int. J. Plast. 7, 693–712 (1991)

    Article  Google Scholar 

  18. Revil-Baudard, B., Massonieri, E.: Simulation du comportement mécanique des alliages de titane pour les procédés de mise en forme à froid. Mécanique & Ind. 11(3–4), 265–270 (2010)

    Article  Google Scholar 

  19. Tuninetti, V., GillesO, G., Habraken, M.A.: Anisotropy and tension-compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V. Int. J.Plast. 67, 53–68 (2015). https://doi.org/10.1016/j.ijplas.2014.10.003

    Article  Google Scholar 

  20. Tuninetti, V., Habraken, A.: Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy. May Mate. Sci. Eng. A 605, 39–50 (2014). https://doi.org/10.1016/j.msea.2014.03.009

    Article  Google Scholar 

  21. Gilles, G., Habraken, A., Duchêne, L.: Experimental investigation and phenomenological modeling of the quasi-static mechanical behavior of TA6V titanium alloy. Sept. Key Eng. Mater. 622–623, 1200–1206 (2014). https://doi.org/10.4028/www.scientific.net/KEM.622-623.1200

    Article  Google Scholar 

  22. Luo, S., Castany, P., Thuillier, S., Huot, M.: Spatiotemporal characteristics of portevin-le chatelier effect in Ti–Mo alloys under thermo-mechanical loading. Mater. Sci. Eng. A 733(22), 137–143 (2018)

    Article  Google Scholar 

  23. Olfa, D.: Comportement anisotropes des alliages aluminium-des essais complexes, éditions universitaires européennes. Ph.D. Thesis in Mechanical Engineering, ISBN: 6138441249 (2018)

  24. Mochinko, A.: Multiscale investigation of room-temperature viscoplasticity and sustained load cracking of Titanium. Influence of hydrogen and oxygen content. Ph.D. Thesis in Mechanical Engineering, https://pastel.archives-ouvertes.fr/tel-01285515 (2015)

  25. Wang, T., Li, B., Wang, Z., Nie, Z.: Formation mechanism of the high speed deformation characteristic miscrostructure based on dislocation slipping and twinning in alpha Ti. J. Mater. Res. 31(24), 3907–3918 (2016)

    Article  Google Scholar 

  26. Mower, T.M.: Degradation of titanium 6Al–4V fatigue strength due to electrical discharge machining. Int. J. Fatigue 64, 84–96 (2014)

    Article  Google Scholar 

  27. Marchenko, A., Maziere, M., Forest, S., Strudel, J.-L.: Crystal plasticity simulation of strain aging phenomena in a-titanium at room temperature. Int. J. Plast. 85, 1–33 (2016)

    Article  Google Scholar 

  28. Konovalenko, I., Maruschak, P., Prentkovskis, O.: Automated method for fractographic analysis of shape and size of dimples on fracture surface of high-strength titanium alloys. Metals 8(3), 161 (2018)

    Article  Google Scholar 

  29. Madhukar, S., Sai, V.P., Kumar, S., Prakash, D.J.: Experimental investigation on effect of heat treatment on mechanical properties of steels and titanium. Int. J. Curr Eng. Technol. 7(3), 111–1112 (2017)

    Google Scholar 

  30. Dyakonov, G.S., Mironov, S., Enikeev, N., Valiev, R.Z., Semiatin, S.L.: Annealing behavior of severly deformed titanium grade 4. Mater. Sci. Eng. A 742(89–101), p13 (2019)

    Google Scholar 

  31. Hector Louis, G., Zavattieri, P.D.: Nucleation and propagation of portevin-Le Châtelier bands in austenitic steel with twinning induced plasticity. Expe. Appl. Mech. 6, 855–863 (2010)

    Google Scholar 

  32. Konovalenko, I., Maruschak, P., Prentkovskis, O.: Automated method for fractographic analysis of shape and size of dimples on fracture surface of high-strength titanium alloys. Metals Metall. J. 8(3), 161 (2018)

    Google Scholar 

  33. Bassoli, E., Denti, L.: Assay of secondary anisotropy in additively manufactured alloys for dental applications. Materials 11(10), 1–7 (2018)

    Article  Google Scholar 

  34. Abbassi, F., Belhadj, T., Mistou b, S., Zghal, A.: Parameter identification of a mechanical ductile damage using artificial neural networks in sheet metal forming. Mater. Des. 45, 605–615 (2012)

    Article  Google Scholar 

  35. Gilles, G., Habraken, A.M., Duchêne, L.: Experimental Investigation and Phenomenological Modeling of the Quasi-Static Mechanical Behavior of TA6V Titanium Alloy. Key Engineering Materials, vol. 622-623. Trans Tech Publications Ltd., Zurich (2014)

    Google Scholar 

  36. Bron, F.: Ductile tearing thin 2024 aluminum alloy sheets for aeronautical application. Ph.D. Thesis, National School of Mines of Paris (2004)

  37. Hollomon, J.H.: Tensile deformation. Trans AIME 162, 268–290 (1945)

    Google Scholar 

  38. Voce, E.: The relationship between stress and strain for homogeneous deformations. J. Inst. Metals 74, 537–562 (1948)

    Google Scholar 

  39. Swift, H.W.: Plastic instability under plane stress. J. Mech. Phys. Solids 1(1), 1–18 (1952)

    Article  MathSciNet  Google Scholar 

  40. Ludwik, P.: Applied Mechanik: elemente der technologischen mechanik. Springer, Berlin (1909)

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the members of the LASMIS Laboratory at UTT (University of Technology of Troyes) and LNIO laboratory for mechanical tests and SEM observations

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harbaoui Rym.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rym, H., Olfa, D. & Amna, Z. Strategy for identification of HCP structure materials: study of Ti–6Al–4V under tensile and compressive load conditions. Arch Appl Mech 90, 1685–1703 (2020). https://doi.org/10.1007/s00419-020-01690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01690-7

Keywords

Navigation