Abstract
Electric trains rely on the pantograph and the overhead catenary system (OCS) to receive energy from the power main lines. The purpose of this article is to elaborate on the simulation of pantograph and catenary dynamic interaction. The main feature of this method is using a fast analytical approach in order to simulate the entire catenary and to avoid using the finite elements method. This method is making use of the system vibration modes. Therefore, vital phenomenon such as the wave propagation and reflections can also be simulated. Additionally, droppers under compression are simulated as buckled columns that can endure certain amount of compression forces. Inclusion of the proper OCS initial conditions is also a unique add on to this procedure. Evaluation of both static and dynamic responses of catenary is by comparing with the results from some other available software programs. Validation of the results is according to EN 50318: 2002 standard document.
This is a preview of subscription content, access via your institution.













References
EN, B.: Technical criteria for the interaction between pantograph and overhead line. In: EN 50367 (2012)
Zhang, W., Zou, D., Tan, M., Zhou, N., Li, R., Mei, G.: Review of pantograph and catenary interaction. Front. Mech. Eng. 13(2), 311–322 (2018)
Kulkami, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vib. Acoust. 139(1), 52 (2017)
Van Vo, O., Massat, J.-P., Balmes, E.: Waves, modes and properties with a major impact on dynamic pantograph–catenary interaction. J. Sound Vib. 402, 51–69 (2017)
Sorrentino, S., Anastasio, D., Fasana, A., Marchesiello, S.: Distributed parameter and finite element models for wave propagation in railway contact lines. J. Sound Vib. 410, 1–18 (2017)
Song, Y., Ouyang, H., Liu, Z., Mei, G., Wang, H., Xiaobing, L.: Active control of contact force for high-speed railway pantograph–catenary based on multi-body pantograph model. Mech. Mach. Theory 115, 35–59 (2017)
Zhou, N., Lv, Q., Yang, Y., Zhang, W.: TPL-PCRUN statement of methods. Veh. Syst. Dyn. 53, 380–391 (2015)
Tur, M., Baeza, L., Fuenmayor, F., García, E.: PACDIN statement of methods. Veh. Syst. Dyn. 53, 402–411 (2015)
Sánchez-Rebollo, C., Carnicero, A., Jiménez-Octavio, J.: CANDY statement of methods. Veh. Syst. Dyn. 53, 392–401 (2015)
Jönsson, P.-A., Stichel, S., Nilsson, C.: CaPaSIM statement of methods. Veh. Syst. Dyn. 53, 341–346 (2015)
Ikeda, M.: ‘Gasen-do FE’statement of methods. Veh. Syst. Dyn. 53, 357–369 (2015)
Finner, L., Poetsch, G., Sarnes, B., Kolbe, M.: Program for catenary–pantograph analysis, PrOSA statement of methods and validation according EN 50318. Veh. Syst. Dyn. Int. J. Veh. Mech. Mobil. 53(3), 305–313 (2015)
Collina, A., Bruni, S., Facchinetti, A., Zuin, A.: PCaDA statement of methods. Veh. Syst. Dyn. 53, 347–356 (2015)
Cho, Y.H.: SPOPS statement of methods. Veh. Syst. Dyn. 53, 329–340 (2015)
Ambrósio, J., Pombo, J., Antunes, P., Pereira, M.: PantoCat statement of method. Veh. Syst. Dyn. 53, 314–328 (2015)
Kia, S. H., Bartolini, F., Mpanda-Mabwe, A., Ceschi, R.: Pantograph–catenary interaction model comparison. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 1584–1589 (2010)
Leissa, A.W., Qatu, M.S.: Vibrations of Continuous Systems. McGraw-Hill, New York (2011)
Zhou, N., Lv, Q., Yang, Y., Zhang, W.: TPL-PCRUN statement of methods. Veh. Syst. Dyn. Int. J. Veh. Mech. Mobil. 53(3), 380–391 (2015). https://doi.org/10.1080/00423114.2014.982136
Kargarnovin, M.H., Younesian, D., Thompson, D., Jones, C.: Ride comfort of high speed trains travelling over railway bridges. Veh. Syst. Dyn. 43(3), 173–197 (2005)
Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)
Vesali, F., Molatefi, H., Rezvani, M.A.: Using new analytical algorithm to study the effect of temperature variations on static shape of contact wire of OCS. J. Vibroeng. 18, 2061–2073 (2016)
Ambrósio, J., Pombo, J., Pereira, M., Antunes, P., Mósca, A.: Recent developments in pantograph–catenary interaction modelling and analysis. Int. J. Railw. Technol. 1, 249–278 (2012)
Lindberg, H.E.: Little book of dynamic buckling. In: LCE Science/Software (2003)
Kuzkin, V.A.: Structural model for the dynamic buckling of a column under constant rate compression. arXiv preprint arXiv:1506.00427 (2015)
Kia, S.H., Bartolini, F., Mpanda-Mabwe, A.: Pantograph–catenary interaction model comparison. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, IEEE (2010)
Manchem, L.D., Srinivasan, M.N., Zhou, J.: Analytical modeling of residual stress in railroad rails using critically refracted longitudinal ultrasonic waves with COMSOL multiphysics module. In: Srinivasan, A, Zhou, J. (eds.), International Mechanical Engineering Congress and Exposition, Canada. No. 9 (2014)
Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y.H., Finner, L., Ikeda, M., Kwon, S.Y., Massat, J.-P., Stichel, S., Tur, M., Zhang, W.: The results of the pantograph–catenary interaction benchmark. Veh. Syst. Dyn. Int. J. Veh. Mech. Mobil. 53(3), 412–435 (2015)
Acknowledgements
This research was supported by the office for “National Master Plan for High Speed Trains” at Iran University of Science and Technology. The authors are grateful for the support awarded.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: Derivation of the stiffness, damping and mass matrices
Appendix A: Derivation of the stiffness, damping and mass matrices
Variable | Description | Variable | Description |
---|---|---|---|
\({\mathbf {M}}\) | Mass matrix of whole system | \(m_{p1i}\) | Mass of collector strip of ith pantograph (Figure 5) |
\({\mathbf {C}}\) | Damping matrix of whole system | \(m_{p2i}\) | Second mass of ith pantograph (Figure 5) |
\({\mathbf {K}}\) | Stiffness matrix of whole system | \({\mathbf {slk}}\) | Vector shows which dropper is on and which one is off due to slaking (0 or 1) |
\({\mathbf {f}}\) | Excitation factor | \({\mathbf {slkm}}\) | Slaking vector of droppers which connects to messenger cable (0 or 1) |
\({\mathbf {x}}\) | Space state variable | \({\mathbf {slks}}\) | Slaking vector of droppers which connects to stitch wires (0 or 1) |
\({\mathbf {x}}_{{\mathbf {m}}}\) | Messenger cable Rayleigh-Ritz coefficient | \({\mathbf {slksi}}\) | Slaking vector of droppers which connects to ith stitch wires (0 or 1) |
\({\mathbf {x}}_{{\mathbf {c}}}\) | Contact wire Rayleigh–Ritz coefficient | \({\mathbf {k}}_{{\mathbf {dr}}}\) | Stiffness vector of droppers |
\({\mathbf {x}}_{{\mathbf {si}}}\) | ith Stitch wire Rayleigh–Ritz coefficient | \({\mathbf {k}}_{{\mathbf {drm}}}\) | Stiffness vector of droppers which connects to messenger cable |
\({\mathbf {x}}_{{\mathbf {pi}}}\) | ith Pantograph Rayleigh–Ritz coefficient | \({\mathbf {k}}_{{\mathbf {drs}}}\) | Stiffness vector of droppers which connects to stitch wires |
\({\mathbf {M}}_{{\mathbf {m}}}\) | Mass matrix of messenger cable | \({\mathbf {k}}_{{\mathbf {drsi}}}\) | Stiffness vector of droppers which connects to ith stitch wire |
\({\mathbf {M}}_{{\mathbf {c}}}\) | Mass matrix of contact wire | \({\mathbf {k}}_{{\mathbf {su}}}\) | Stiffness vector of messenger cable supports |
\({\mathbf {M}}_{{\mathbf {si}}}\) | Mass matrix of ith stitch wire | \({\mathbf {k}}_{{\mathbf {stc}}}\) | Stiffness vector of stitch wire and messenger cable clamps |
\({\mathbf {M}}_{{\mathbf {pi}}}\) | Mass matrix of ith pantograph | \({\mathbf {k}}_{{\mathbf {re}}}\) | Stiffness vector of registration arms |
\({\mathbf {K}}_{{\mathbf {m}}}\) | Stiffness matrix of messenger cable | \({\mathbf {k}}_{{\mathbf {re}}}\) | Stiffness vector of contact point of droppers |
\({\mathbf {K}}_{{\mathbf {c}}}\) | Stiffness matrix of contact wire | \(k_{c}\) | Stiffness of contact point (pantograph and catenary) |
\({\mathbf {K}}_{{\mathbf {si}}}\) | Stiffness matrix of ith stitch wire | \(C_{c}\) | Damping of contact point (pantograph and catenary) |
\({\mathbf {K}}_{{\mathbf {p}}}\) | Stiffness matrix of pantograph | \(k_{p1i}\) | Stiffness of collector strip of ith pantograph (Figure 5) |
\({\mathbf {K}}_{{\mathbf {mc}}}\) | Relative stiffness matrix between messenger cable and contact wire | \(k_{p2i}\) | Second stiffness of ith pantograph (Figure 5) |
\({\mathbf {K}}_{{\mathbf {msi}}}\) | Relative stiffness matrix between messenger cable and ith stitch wire | \({\varvec{c}}_{{\mathbf {dr}}}\) | Damping vector of droppers |
\({\mathbf {K}}_{{\mathbf {csi}}}\) | Relative stiffness matrix between contact wire and ith stitch wire | \({\varvec{c}}_{{\mathbf {drm}}}\) | Damping vector of droppers which connects to messenger cable |
\({\mathbf {K}}_{{\mathbf {cpi}}}\) | Relative stiffness matrix between contact wire and ith pantograph | \({\mathbf {c}}_{{\mathbf {drs}}}\) | Damping vector of droppers which connects to stitch wires |
\({{{\varvec{\upalpha }} m}}\) | Mass coefficient of messenger cable | \({\mathbf {c}}_{{\mathbf {drsi}}}\) | Damping vector of droppers which connects to ith stitch wire |
\({{{\varvec{\upalpha }} c}}\) | Mass coefficient of contact wire | \({\mathbf {c}}_{{\mathbf {su}}}\) | Damping vector of messenger cable supports |
\({{{\varvec{\upalpha }} s}}\) | Mass coefficient of stitch wire | \({\mathbf {c}}_{{\mathbf {stc}}}\) | Damping vector of stitch wire and messenger cable clamps |
\(m_\mathrm{ucdr}\) | Mass of upper clamp of dropper | \({\mathbf {c}}_{{\mathbf {re}}}\) | Damping vector of registration arms |
\(m_\mathrm{lcdr}\) | Mass of lower clamp of dropper | \({\mathbf {c}}_{{\mathbf {re}}}\) | Damping vector of contact point of droppers |
\(m_\mathrm{cst}\) | Mass of connection clamp of stitch wire and messenger cable | \(c_{p1i}\) | Damping of collector strip of ith pantograph (Figure 5) |
\({em}_\mathrm{re}\) | Equivalent mass of registration arm | \(c_{p2i}\) | Second Damping of ith pantograph (Figure 5) |
\(x_\mathrm{drm}\) | Location of droppers in messenger cable | \({{{\varvec{\Omega }} }}_{{\mathbf {m}}}^{{\mathbf {2}}}\) | Diagonal matrix of square of messenger cable natural frequencies. |
\(x_\mathrm{drc}\) | Location of droppers in contact wire | \({{{\varvec{\Omega }} }}_{c}^{2}\) | Diagonal matrix of square of contact wire natural frequencies |
\(x_\mathrm{drs}\) | Location of droppers in stitch wire | \({{{\varvec{\Omega }} }}_{s}^{2}\) | Diagonal matrix of square of stitch wire natural frequencies. |
\(x_\mathrm{drcsi}\) | Location of droppers of ith stitch wire in contact wire | \({\mathbf {Z}}_{{\mathbf {m}}}^{{\mathbf {2}}}\) | Diagonal matrix of square of messenger cable natural frequencies. |
\(x_\mathrm{rem}\) | Location of registration arm in messenger cable | \({\mathbf {Z}}_{{\mathbf {c}}}^{{\mathbf {2}}}\) | Diagonal matrix of square of contact wire natural frequencies. |
\(x_\mathrm{rec}\) | Location of registration arm in contact wire | \({\mathbf {Z}}_{{\mathbf {s}}}^{{\mathbf {2}}}\) | Diagonal matrix of square of stitch wire natural frequencies |
\(x_\mathrm{stcm}\) | Location of stitch wires connection on messenger cable | \(\mathbf {u}_{{\mathbf {3\times 1}}}\) | Input vector of system including weight, dead load of droppers and uplift force |
\(x_\mathrm{stcmi}\) | Location of ith stitch wire connection on messenger cable | \(F_\mathrm{uplift}\) | Uplift force which is applied to pantograph |
\(x_\mathrm{stcs}\) | Location of stitch wire connection on stitch wire (\(l_\mathrm{st}, 0)\). | \({\mathbf {f}}_{{\mathbf {gm}}}\) | Gravity force on messenger cable |
\({\mathbf {x}}_{{\mathbf {pac}}}{\mathbf {(}}t{\mathbf {)}}\) | Location vector of pantographs on contact wire | \({\mathbf {f}}_{{\mathbf {gc}}}\) | Gravity force on contact wire |
\(x_\mathrm{paci}(t)\) | Location of ith pantograph on contact wire | \({\mathbf {f}}_{{\mathbf {gsi}}}\) | Gravity force on ith Stitch wire |
\({{\varvec{\Phi }} \mathbf {m(x,n)}}\) | Mode shape matrix of messenger cable in n mode and x location | \({\mathbf {f}}_{{\mathbf {gpi}}}\) | Gravity force on ith pantograph |
\({\varvec{\Phi }} {\varvec{s(x,n)}}\) | Mode shape matrix of stitch wire in n mode and x location | \({\mathbf {f}}_{{\mathbf {dm}}}\) | Dead loads of droppers on messenger cable |
\({{\varvec{\Phi }} \mathbf {c(x,n)}}\) | Mode shape matrix of contact wire in n mode and x location | \({\mathbf {f}}_{{\mathbf {dc}}}\) | Dead loads of droppers on contact wire |
\(\varvec{\acute{\Phi }}{\mathbf {c(x,n)}}\) | Gradient of mode shape matrix of contact wire in n mode and x location | \({\mathbf {f}}_{{\mathbf {dsi}}}\) | Dead loads of droppers on stitch wire |
nm | Number of considered mode shape for messenger cable | \({\rho A}_\mathrm{m}\) | Mass per unit length of messenger cable |
nc | Number of considered mode shape for contact wire | \({\rho A}_\mathrm{c}\) | Mass per unit length of contact wire |
ns | Number of considered mode shape for stitch wire | \({\rho A}_\mathrm{s}\) | Mass per unit length of stitch wire |
nsp | Number of spans | \({F0}_\mathrm{drm}\) | Dead load of droppers connected to messenger cable |
ndrm | Number of connected dropper to messenger cable | \({F0}_\mathrm{drs}\) | Dead load of droppers connected to stitch wire |
ndrsi | Number of connected dropper to ith stitch wire | \(\Delta _\mathrm{m}\) | The initial location of dropper clamps on messenger cable |
ndr | Number of dropper | \(\Delta _\mathrm{cm}\) | The initial location of dropper clamps on contact wire (droppers connected to messenger cable) |
\(l_\mathrm{st}\) | Length of stitch wire | \(\Delta _\mathrm{cs}\) | The initial location of dropper clamps on contact wire (droppers connected to stitch wire) |
\(\Delta _\mathrm{s}\) | The initial location of dropper clamps on stitch wire |
should be calculated as follows.
Parameter | Description |
---|---|
\({\mathbf {M}}_{{{\mathbf {m}}}_{{\mathbf {nm\times nm}}}}\) | \(\left( {{{\varvec{\upalpha }} \mathbf {m}}}_{{\mathbf {nm\times 1}}}{\mathbf {.}}m_{ucdr}{\mathbf {I}}_{{\mathbf {1\times nm}}} \right) .\left( {{{{\varvec{\Phi }}\mathbf {m}(}}{\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n)}}}_{{\mathbf {nm\times ndrm}}}\left( {{{\varvec{\Phi } \mathbf{m}(}}{\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n)}}}_{{\mathbf {nm\times ndrm}}} \right) ^{{\mathbf {T}}} \right) {\mathbf {+}}\) |
\(\left( {{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}{\mathbf {.}}m_{cst}{\mathbf {I}}_{{\mathbf {1\times nm}}} \right) .\left( {{{\varvec{\Phi } \mathbf{m}(}}{\mathbf {x}}_{{\mathbf {stcm}}}{\mathbf {,n)}}}_{{\mathbf {nm\times 2(nsp+1)}}}\left( {{{\varvec{\Phi } \mathbf{m}(}}{\mathbf {x}}_{{\mathbf {stcm}}}{\mathbf {,n)}}}_{{\mathbf {nm\times 2(nsp+1)}}} \right) ^{{\mathbf {T}}} \right) {\mathbf {+}}{\mathbf {I}}_{{\mathbf {nm\times nm}}}\) | |
\({\mathbf {M}}_{{{\mathbf {c}}}_{{\mathbf {nc\times nc}}}}\) | \(\left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}{\mathbf {.}}m_{lcdr}{\mathbf {\times }}{\mathbf {I}}_{{\mathbf {1\times nc}}} \right) .\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {dr}}}{\mathbf {,n)}}}_{{\mathbf {nc\times ndr}}}\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {dr}}}{\mathbf {,n)}}}_{{\mathbf {nc\times ndr}}} \right) ^{{\mathbf {T}}} \right) {\mathbf {+}}\left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}{\mathbf {.}}{{\mathbf {em}}}_{{\mathbf {re}}}{\mathbf {I}}_{{\mathbf {1\times nc}}} \right) .\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {rec}}}{\mathbf {,n)}}}_{{\mathbf {nc\times nsp+1}}}\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {rec}}}{\mathbf {,n)}}}_{{\mathbf {nc\times nsp+1}}} \right) ^{{\mathbf {T}}} \right) {\mathbf {+}}{\mathbf {I}}_{{\mathbf {nc\times nc}}}\) |
\({\mathbf {M}}_{{{\mathbf {si}}}_{{\mathbf {ns\times ns}}}}\) | \(\left( {{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}{\mathbf {.}}{\mathbf {m}}_{{\mathbf {ucdr}}}{\mathbf {I}}_{{\mathbf {1\times ns}}} \right) .\left( {{{\varvec{\Phi } \mathbf{s}(}}{\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n)}}}_{{\mathbf {ns\times ndrs}}}\left( {{{\varvec{\Phi } \mathbf{s}(}}{\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n)}}}_{{\mathbf {ns\times ndrs}}} \right) ^{{\mathbf {T}}} \right) {\mathbf {+}}\left( {{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}{\mathbf {.}}{\mathbf {m}}_{{\mathbf {cst}}}{\mathbf {I}}_{{\mathbf {1\times ns}}} \right) .\left( {{{\varvec{\Phi } \mathbf{s}(}}{\mathbf {x}}_{{\mathbf {stcs}}}{\mathbf {,n)}}}_{{\mathbf {ns\times 2}}}\left( {{{\varvec{\Phi } \mathbf{s}(}}{\mathbf {x}}_{{\mathbf {stcs}}}{\mathbf {,n)}}}_{{\mathbf {ns\times 2}}} \right) ^{{\mathbf {T}}} \right) {\mathbf {+}}{\mathbf {I}}_{{\mathbf {ns\times ns}}}\) |
\({\mathbf {M}}_{{{\mathbf {pi}}}_{{\mathbf {2\times 2}}}}\) | \(\left[ {\begin{array}{*{20}c} {\mathbf {m}}_{{\mathbf {p1i}}} &{} {\mathbf {0}} \\ {\mathbf {0}} &{} {\mathbf {m}}_{{\mathbf {p2i}}}\\ \end{array} } \right] \) |
\({\mathbf {K}}_{{{\mathbf {m}}}_{{\mathbf {nm\times nm}}}}\) | \(\left( \left( {{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}\left( {\mathbf {slkm.}}{\mathbf {k}}_{{\mathbf {drm}}} \right) \right) _{{\mathbf {nm\times ndrm}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times ndrm}}} \right) \left( {{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times ndrm}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {+}}\left( \left( {{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}{\mathbf {.}}{\mathbf {k}}_{{\mathbf {stc}}} \right) _{{\mathbf {nm\times 2(nsp+1)}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {stcm}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times 2(nsp+1)}}} \right) \left( {{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {stcm}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times 2(nsp+1)}}} \right) ^{{\mathbf {T}}}\) | |
\({\mathbf {+}}\left( \left( {{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}{\mathbf {.}}{\mathbf {k}}_{{\mathbf {su}}} \right) {\mathbf {.}}{{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {rem}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times nsp+1}}} \right) \left( {{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {rem}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times nsp+1}}} \right) ^{{\mathbf {T}}}{\mathbf {+}}{{{\varvec{\upomega }} }}^{{\mathbf {2}}}_{{{\mathbf {m}}}_{{\mathbf {nm\times nm}}}}\) | |
\({\mathbf {K}}_{{{\mathbf {c}}}_{{\mathbf {nc\times nc}}}}\) | \(\left( \left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}\left( {\mathbf {slk.}}{\mathbf {k}}_{{\mathbf {dr}}} \right) \right) _{{\mathbf {nc\times ndr}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {drc}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times ndr}}} \right) \left( {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {drc}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times ndr}}} \right) ^{{\mathbf {T}}}{\mathbf {+}}\left( \left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}{\mathbf {.}}{\mathbf {k}}_{{\mathbf {re}}} \right) _{{\mathbf {nc\times nsp+1}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {rec}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times nsp+1}}} \right) \left( {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {rec}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times nsp+1}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {+}}\left( \left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nm\times 1}}}{\mathbf {.}}{\mathbf {k}}_{{\mathbf {c}}} \right) _{{\mathbf {nc\times npan}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {pac}}}{\mathbf {(}}t{\mathbf {),n}} \right) }_{{\mathbf {nc\times npan}}} \right) \left( {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {pan}}}{\mathbf {(}}t{\mathbf {),n}} \right) }_{{\mathbf {nc\times npan}}} \right) ^{{\mathbf {T}}}{\mathbf {+}}{{{\varvec{\Omega }} }}^{{\mathbf {2}}}_{{{\mathbf {c}}}_{{\mathbf {nc\times nc}}}}\) | |
\({\mathbf {K}}_{{{\mathbf {si}}}_{{\mathbf {ns\times ns}}}}\) | \(\left( \left( {{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}\left( {\mathbf {slksi.}}{\mathbf {k}}_{{\mathbf {drsi}}} \right) \right) _{{\mathbf {ns\times ndrsi}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times ndrsi}}} \right) \left( {{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times ndrsi}}} \right) ^{{\mathbf {T}}}{\mathbf {+}}\left( \left( {{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}{\mathbf {.}}{\mathbf {k}}_{{\mathbf {stc}}} \right) _{{\mathbf {ns\times 2}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {stcs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times 2}}} \right) \left( {{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {stcs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times 2}}} \right) ^{{\mathbf {T}}}{\mathbf {+}}{{{\varvec{\Omega }} }}^{{\mathbf {2}}}_{{{\mathbf {s}}}_{{\mathbf {ns\times ns}}}}\) |
\({\mathbf {K}}_{{{\mathbf {mc}}}_{{\mathbf {nm\times nc}}}}\) | \(\left( {\left( {{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}\left( {\mathbf {slkm.}}{\mathbf {k}}_{{\mathbf {drm}}} \right) \right) {\mathbf { }}}_{{\mathbf {nm\times ndrm}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times ndrm}}} \right) \left( {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times ndrm}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{{\mathbf {cm}}}_{{\mathbf {nc\times nm}}}}\) | \(\left( {\left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}\left( {\mathbf {slkm.}}{\mathbf {k}}_{{\mathbf {drm}}} \right) \right) {\mathbf { }}}_{{\mathbf {nc\times ndrm}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times ndrm}}} \right) \left( {{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times ndrm}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{\mathbf {msi}}}{\mathbf {K}}_{{{{\mathbf {msi}}}}_{{\mathbf {nm\times nsi}}}}\) | \(\left( {\left( {{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}{\mathbf {k}}_{{\mathbf {stc}}} \right) {\mathbf { }}}_{{\mathbf {nm\times 2}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {stcmi}}}{\mathbf {,n}} \right) }_{{\mathbf {nm\times 2}}} \right) \left( {{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {stcs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times 2}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{{\mathbf {sic}}}_{{\mathbf {ns\times nc}}}}\) | \(\left( {\left( {{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}{\mathbf {k}}_{{\mathbf {stc}}} \right) {\mathbf { }}}_{{\mathbf {ns\times 2}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {stcs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times 2}}} \right) \left( {{{\varvec{\Phi } \mathbf{m}}}\left( {\mathbf {x}}_{{\mathbf {stcmi}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times 2}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{{\mathbf {csi}}}_{{\mathbf {nc\times ns}}}}\) | \(\left( {\left( {{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}\left( {\mathbf {slksi.}}{\mathbf {k}}_{{\mathbf {drsi}}} \right) \right) {\mathbf { }}}_{{\mathbf {nc\times ndrsi}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {drcsi}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times ndrsi}}} \right) \left( {{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times ndrsi}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{{\mathbf {sic}}}_{{\mathbf {ns\times nc}}}}\) | \(\left( {\left( {{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}\left( {\mathbf {slksi.}}{\mathbf {k}}_{{\mathbf {drsi}}} \right) \right) {\mathbf { }}}_{{\mathbf {ns\times ndrsi}}}{\mathbf {.}}{{{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n}} \right) }_{{\mathbf {ns\times ndrsi}}} \right) \left( {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {drcsi}}}{\mathbf {,n}} \right) }_{{\mathbf {nc\times ndrsi}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{{\mathbf {cpi}}}_{{\mathbf {nc\times 2}}}}\) | \({{\mathbf {-}}\left( {\mathop {{{\varvec{\upalpha }} \mathbf{c}}}\limits ^{\rightarrow }}_{{\mathbf {nc\times 1}}}{\mathbf {.}}k_{c} \right) }_{{\mathbf {nc\times 1}}}.{{{{\varvec{\upvarphi }} \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {paci}}}{\mathbf {(}}t{\mathbf {),n}} \right) }_{{\mathbf {nc\times 1}}}\) |
\({\mathbf {K}}_{{{\mathbf {pic}}}_{{\mathbf {2\times nc}}}}\) | \({-k}_{c}.\left( {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {paci}}}{\mathbf {(t),n}} \right) }_{{\mathbf {nc\times 1}}} \right) ^{{\mathbf {T}}}{-V_{p}C}_{c}.\left( {\varvec{{\acute{\Phi }}}{\mathbf {c}}\left( {\mathbf {x}}_{{\mathbf {paci}}}{\mathbf {(}}t{\mathbf {),n}} \right) }_{{\mathbf {nc\times 1}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {C}}_{{{\mathbf {pic}}}_{{\mathbf {2\times nc}}}}\) | \({-c}_{c}.\left( \left[ {{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x}}_{{\mathbf {paci}}}{\mathbf {(}}t{\mathbf {),n}} \right) \right] _{{\mathbf {nc\times 1}}} \right) ^{{\mathbf {T}}}\) |
\({\mathbf {K}}_{{{\mathbf {pi}}}_{{\mathbf {2\times 2}}}}\) | \(\left[ {\begin{array}{*{20}c} k_{p1i}+k_{c} &{} -k_{p1i}\\ {-k}_{p1i} &{} k_{p1i}+k_{p2i}\\ \end{array} } \right] \) |
\({\mathbf {u}}_{{\mathbf {3\times 1}}}\) | \(\left[ {\begin{array}{*{20}c} \mathrm {g} &{} \mathrm {1} &{} f_{uplift}\\ \end{array} } \right] ^{{\mathbf {T}}}\) |
\(f_{gm}\) | \(-{\rho A}_{m}.{{{\varvec{\upalpha }} \mathbf { m}}}_{nm\times 1}.\left( \int {{{\varvec{\Phi } }}{} \mathbf{m}\left( x,n \right) } dx \right) _{nm\times 1}\)\(-\left( m_{ucdr}.{{{\varvec{\upalpha }} \mathbf { m}}}_{nm\times 1} \right) . \left( {\mathbf {I}}_{1\times ndrm}\left( \left[ {{\varvec{\Phi } }}\mathbf {m(}\mathbf {x}_{\mathbf {drm}}\mathbf {,}\mathrm {n}\mathbf {)} \right] _{{\mathbf {nm\times ndrm}}} \right) ^{T} \right) \) |
\({\mathbf {f}}_{{\mathbf {dm}}}\) | \({{{\varvec{\upalpha }} \mathbf { m}}}_{{\mathbf {nm\times 1}}}.{{\mathbf {(}} {{\mathbf {(}}{\mathbf {k}}_{{\mathbf {drm}}}{{.}}\left( {\mathbf {\Delta }}_{{\mathbf {m}}} {\mathbf {-}}{\mathbf {\Delta }}_{{\mathbf {cm}}} \right) {\mathbf {-}}{{\mathbf {f0}}}_{{\mathbf {drm}}} {\mathbf {)}}}_{{\mathbf {1\times ndrm}}}{\mathbf {\times }}\left( {{{\varvec{\Phi } \mathbf{m}(}}{\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n)}}}_{{\mathbf {nm\times ndrm}}} \right) ^{{\mathbf {T}}}{\mathbf {)}}}^{{\mathbf {T}}}\) |
\({\mathbf {f}}_{{\mathbf {gc}}}\) | \({\mathbf {-}}{{{{\varvec{\uprho }} \mathbf{A}}}}_{{\mathbf {c}}}.{{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}. \left( \int {{{\varvec{\Phi } \mathbf{c}}}\left( {\mathbf {x,n}} \right) } {\mathbf {dx}} \right) _{{\mathbf {nc\times 1}}}\)\({\mathbf {-}}\left( m_{lcdr}{\mathbf {.}}{{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}} \right) .\left( {\mathbf {I}}_{{\mathbf {1\times ndr}}}{\mathbf {\times }}\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {drc}}}{\mathbf {,n)}}}_{{\mathbf {nc\times ndr}}} \right) ^{{\mathbf {T}}} \right) \) |
\({\mathbf {f}}_{{\mathbf {dc}}}\) | \({\mathbf {-}}{{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}. {{\mathbf {(}}{{\mathbf {(}}{\mathbf {k}}_{{\mathbf {drm}}}{\mathbf {.}}\left( {\mathbf {\Delta }}_{{\mathbf {m}}}{\mathbf {-}}{\mathbf {\Delta }}_{{\mathbf {cm}}} \right) {\mathbf {-}}{{\mathbf {f0}}}_{{\mathbf {drm}}}{\mathbf {)}}}_{{\mathbf {1\times ndrm}}}{\mathbf {\times }}\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {drm}}}{\mathbf {,n)}}}_{{\mathbf {nc\times ndrm}}} \right) ^{{\mathbf {T}}}{\mathbf {)}}}^{{\mathbf {T}}}\)\({\mathbf {-}}{{{\varvec{\upalpha }} \mathbf { c}}}_{{\mathbf {nc\times 1}}}.{{\mathbf {(}}{{\mathbf {(}}{\mathbf {k}}_{{\mathbf {drs}}}{\mathbf {.}}\left( {\mathbf {\Delta }}_{{\mathbf {s}}}{\mathbf {-}}{\mathbf {\Delta }}_{{\mathbf {cs}}} \right) {\mathbf {-}}{{\mathbf {f0}}}_{{\mathbf {drs}}}{\mathbf {)}}}_{{\mathbf {1\times ndrs}}}{\mathbf {\times }}\left( {{{\varvec{\Phi } \mathbf{c}(}}{\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n)}}}_{{\mathbf {nc\times ndrs}}} \right) ^{{\mathbf {T}}}{\mathbf {)}}}^{{\mathbf {T}}}\) |
\({\mathbf {f}}_{{\mathbf {gsi}}}\) | \({\mathbf {-}}{\rho A}_{s}.{{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}.\left( \int \left[ {{\varvec{\Phi } \mathbf{s}}}\left( {\mathbf {x,n}} \right) \right] {\mathbf {dx}} \right) _{{\mathbf {ns\times 1}}}\)\({\mathbf {-}}\left( {\mathbf {m}}_{{\mathbf {ucdr}}}{\mathbf {.}}{{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}} \right) .\left( {\mathbf {I}}_{{\mathbf {1\times ndrs}}}{\mathbf {\times }}\left( {{{\varvec{\Phi } \mathbf{s}(}}{\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n)}}}_{{\mathbf {ns\times ndrs}}} \right) ^{{\mathbf {T}}} \right) \) |
\({\mathbf {f}}_{{\mathbf {ds}}}\) | \({{{\varvec{\upalpha }} \mathbf { s}}}_{{\mathbf {ns\times 1}}}.{{\mathbf {(}}{{\mathbf {(}}{\mathbf {k}}_{{\mathbf {drs}}}{\mathbf {.}}\left( {\mathbf {\Delta }}_{{\mathbf {s}}}{\mathbf {-}}{\mathbf {\Delta }}_{{\mathbf {cs}}} \right) {\mathbf {-}}{{\mathbf {f0}}}_{{\mathbf {drs}}}{\mathbf {)}}}_{{\mathbf {1\times ndrs}}}{\mathbf {\times }}\left( {{{\varvec{\Phi } \mathbf{s}(}}{\mathbf {x}}_{{\mathbf {drs}}}{\mathbf {,n)}}}_{{\mathbf {ns\times ndrs}}} \right) ^{{\mathbf {T}}}{\mathbf {)}}}^{{\mathbf {T}}}\) |
\({\mathbf {f}}_{{\mathbf {gpi}}}\) | \(\left[ {\begin{array}{*{20}c} {\mathbf {m}}_{{\mathbf {p1i}}} &{} {\mathbf {m}}_{{\mathbf {p2i}}}\\ \end{array} } \right] ^{{\mathbf {T}}}\) |
Rights and permissions
About this article
Cite this article
Vesali, F., Rezvani, M.A. & Molatefi, H. Simulation of the dynamic interaction of rail vehicle pantograph and catenary through a modal approach. Arch Appl Mech 90, 1475–1496 (2020). https://doi.org/10.1007/s00419-020-01679-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00419-020-01679-2