Skip to main content
Log in

Analysis of a mode III interface crack in a piezoelectric bimaterial based on the dielectric breakdown model

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A mode III electrically conductive crack between two different piezoelectric materials under the action of anti-plane mechanical and in-plane electric loadings is analyzed. The strip dielectric breakdown (DB) model, which is free from the electric field singularity, is developed for this crack. According to this model, the electric field along a DB-zone situated in continuation of a crack is assumed to be equal to the electric breakdown strength. The DB-zone lengths are found from the condition of a finite electric field at the end point of such a zone. Using special representations of field variables via sectionally analytic functions, an inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved analytically. Explicit expressions for the shear stress, the electric field and the crack faces’ sliding displacement jump are derived. The stress intensity factor is determined as well. The dependencies of the mentioned values on the magnitude of the external electromechanical loading are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4), 739–765 (1992)

    Article  MathSciNet  Google Scholar 

  2. Park, S.B., Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70(3), 203–216 (1995)

    Article  Google Scholar 

  3. Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41(1–3), 339–379 (2004)

    Article  Google Scholar 

  4. Gao, H.J., Barnett, D.M.: An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79(2), R25–R29 (1996)

    Article  Google Scholar 

  5. Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45(4), 491–510 (1997)

    Article  Google Scholar 

  6. McMeeking, R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108(1), 25–41 (2001)

    Article  Google Scholar 

  7. Zhang, T.Y.: Dielectric breakdown model for an electrical impermeable crack in a piezoelectric material. Comput. Mater. Contin. 1(1), 107–115 (2004)

    Google Scholar 

  8. Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132(4), 311–327 (2005)

    Article  Google Scholar 

  9. Wang, B.L., Zhang, X.H.: An electrical field based non-linear model in the fracture of piezoelectric ceramics. Int. J. Solids Struct. 41(16–17), 4337–4347 (2004)

    Article  Google Scholar 

  10. Gao, C.F., Noda, N., Zhang, T.Y.: Dielectric breakdown model for a conductive crack and electrode in piezoelectric materials. Int. J. Eng. Sci. 44(3–4), 256–272 (2006)

    Article  MathSciNet  Google Scholar 

  11. Fan, C.Y., Zhao, M.H., Zhou, Y.H.: Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J. Mech. Phys. Solids 57(9), 1527–1544 (2009)

    Article  Google Scholar 

  12. Zhao, M.H., Fan, C.Y.: Strip electric-magnetic breakdown model in a magnetoelectroelastic medium. J. Mech. Phys. Solids 56(12), 3441–3458 (2008)

    Article  Google Scholar 

  13. Zhang, N., Gao, C.F.: Effects of electrical breakdown on a conducting crack or electrode in electrostrictive solids. Eur. J. Mech. A/Solids 32, 62–68 (2012)

    Article  MathSciNet  Google Scholar 

  14. Zhao, M.H., Guo, Z.H., Fan, C.Y., Pan, E.: Electric and magnetic polarization saturation and breakdown models for penny shaped cracks in 3D magnetoelectroelastic media. Int. J. Solids Struct. 50(10), 1747–1754 (2013)

    Article  Google Scholar 

  15. Zhao, M.H., Guo, Z.H., Fan, C.Y.: Numerical method for nonlinear models of penny-shaped cracks in three-dimensional magnetoelectroelastic media. Int. J. Fract. 183(1), 49–61 (2013)

    Article  Google Scholar 

  16. Zhao, M., Dang, H., Xu, G., Fan, C.: Dielectric breakdown model for an electrically semi-permeable penny-shaped crack in three-dimensional piezoelectric media. Acta Mech. Solida Sin. 29(5), 536–546 (2016)

    Article  Google Scholar 

  17. Fan, C.Y., Guo, Z.H., Dang, H.Y., Zhao, M.H.: Extended displacement discontinuity method for nonlinear analysis of penny-shaped cracks in three-dimensional piezoelectric media. Eng. Anal. Bound. Elem. 38, 8–16 (2014)

    Article  MathSciNet  Google Scholar 

  18. Shen, S., Nishioka, T., Kuang, Z.B., Liu, Z.: Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech. Mater. 32(1), 57–64 (2000)

    Article  Google Scholar 

  19. Govorukha, V.B., Kamlah, M.: Prefracture zone modeling for an electrically impermeable interface crack in a piezoelectric bimaterial compound. J. Mech. Mater. Struct. 3(8), 1447–1463 (2008)

    Article  Google Scholar 

  20. Loboda, V., Lapusta, Y., Sheveleva, A.: Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial. Int. J. Solids Struct. 44(17), 5538–5553 (2007)

    Article  Google Scholar 

  21. Loboda, V., Lapusta, Y., Govorukha, V.: Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int. J. Eng. Sci. 46(3), 260–272 (2008)

    Article  Google Scholar 

  22. Loboda, V., Lapusta, Y., Sheveleva, A.: Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47(14–15), 1795–1806 (2010)

    Article  Google Scholar 

  23. Bhargava, R.R., Jangid, K.: Strip electro-mechanical yielding model for piezoelectric plate cut along two equal collinear cracks. Appl. Math. Model. 37(22), 9101–9116 (2013)

    Article  MathSciNet  Google Scholar 

  24. Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54(1), 79–100 (1992)

    Article  Google Scholar 

  25. Govorukha, V., Sheveleva, A., Kamlah, M.: A crack along a part of an interface electrode in a piezoelectric bimaterial under anti-plane mechanical and in-plane electric loadings. Acta Mech. 230(6), 1999–2012 (2019)

    Article  MathSciNet  Google Scholar 

  26. Nakhmein, E.L., Nuller, B.M.: The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J. Appl. Math. Mech. 52(2), 223–230 (1988)

    Article  MathSciNet  Google Scholar 

  27. Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: An electrically permeable crack between two different piezoelectric materials. In: Wriggers, P., Eberhard, P. (eds.) Fracture Mechanics of Piezoelectric Solids with Interface Cracks. Lecture Notes in Applied and Computational Mechanics, vol. 83, pp. 59–95. Springer, Berlin (2017)

    Chapter  Google Scholar 

  28. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)

    Google Scholar 

  29. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  30. Gakhov, F.D.: Boundary Value Problem. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  31. Muskhelisvili, N.I.: Singular integral equations. Noordhoff, Groningen (1953)

    Google Scholar 

  32. Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78(6), 1475–1480 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was executed during a stay of V. G. at Karlsruhe Institute of Technology (KIT). The authors gratefully acknowledge the support from KIT by funding the guest stay of V. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Govorukha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govorukha, V., Kamlah, M. Analysis of a mode III interface crack in a piezoelectric bimaterial based on the dielectric breakdown model. Arch Appl Mech 90, 1201–1213 (2020). https://doi.org/10.1007/s00419-020-01668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01668-5

Keywords

Navigation