Skip to main content
Log in

Influences of surface effects on large deflections of nanomembranes with arbitrary shapes by the coupled BE-RBFs method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper aims to analyze large deflections of nanomembranes including surface effects with arbitrary shapes. The nonlinear differential equations of nanomembranes are formulated by using the nonlinear kinematic relations and the surface elasticity theory of Gurtin–Murdoch. The principle of virtual work is applied to establish the three governing partial differential equations of nanomembranes. The coupled boundary element-radial basis functions (BE-RBFs) method is developed to solve the complicated nonlinear problem of nanomembranes. The proposed methodology is based on the analog equation method in conjunction with radial basis functions in order that the boundary line integrals and boundary elements are only involved. The validation and accuracy of the present method are evaluated by comparing the obtained results with those available from other numerical solutions. The proposed formulation can provide the numerical results that correspond to the experimental findings of the monolayer circular graphene membrane by specifying the proper surface properties. The influences of the surface elastic constants and residual surface stress on large deflection responses of nanomembranes are evidently investigated. Moreover, some numerical results of the present formulations could serve as a benchmark for the numerical evaluation of future research. Finally, the interesting results of large deflection analysis of the various nanomembrane shapes using the coupled BE-RBFs method are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ebil ,O., Sharkawy, A.S., Zablocki, M.J., Prather, D.W.: Chemical and biological sensors based on nanomembrane technology, Proc. SPIE 7673, Advanced Environmental, Chemical, and Biological Sensing Technologies VII, 767308 (2010). https://doi.org/10.1117/12.852435

  2. Huang, M., Cavallo, F., Liu, F., Lagally, M.G.: Nanomechanical architecture of semiconductor nanomembranes. Nanoscale 3, 96–120 (2011)

    Article  Google Scholar 

  3. Markutsya, S., Jiang, C., Pikus, Y., Tsukruk, V.V.: Freely suspended layer-by-layer nanomembranes: testing micromechanical properties. Adv. Funct. Mater. 15(5), 771–780 (2005)

    Article  Google Scholar 

  4. Nicholl, R.J.T., Conley, H.J., Lavrik, N.V., Vlassiouk, I., Puzyrev, Y.S., Sreenivas, V.P., Pantelides, S.T., Bolotin, K.I.: The effect of intrinsic crumpling on the mechanics of free-standing graphene. Nat. Commun. 6, 8789 (2015)

    Article  Google Scholar 

  5. Sun, C.T., Zhang, H.: Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 93(2), 1212–1218 (2003)

    Article  Google Scholar 

  6. Cuenot, S., Fretigny, C., Champagne, S.D., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410–5 (2004)

    Article  Google Scholar 

  7. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  8. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  9. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  10. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  12. Juntarasaid, C., Pulngern, T., Chucheepsakul, S.: Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Physica E 46, 68–76 (2012)

    Article  Google Scholar 

  13. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R., Sahmani, S.: Postbuckling characteristics of nanobeams based on the surface elasticity theory. Compos. B Eng. 55, 240–246 (2013)

    Article  Google Scholar 

  14. Sourki, R., Hosseini, S.A.: Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. Eur. Phys. J. Plus 132(4), 184 (2017)

    Article  Google Scholar 

  15. Ebrahimi, F., Barati, M.R.: Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mech. 228(3), 1197–1210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marzbanrad, J., Boreiry, M., Shaghaghi, G.R.: Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium. Appl. Phys. A 123(4), 246 (2017)

    Article  Google Scholar 

  17. Ebrahimi, F., Daman, M.: Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams. Adv. Nano Res. 5(1), 35–47 (2017)

    Article  Google Scholar 

  18. Ebrahimi, F., Karimiasl, M., Civalek, O., Vinyas, M.: Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams. Adv. Nano Res. 7(2), 77–88 (2019)

    Google Scholar 

  19. Wang, K.F., Wang, B.L.: A finite element model for the bending and vibration of nanoscale plates with surface effect. Finite Elem. Anal. Des. 74, 22–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S.: Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int. J. Mech. Sci. 75, 223–232 (2013)

    Article  Google Scholar 

  21. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  22. Malekzadeh, P., Haghighi, M.R.G., Shojaee, M.: Nonlinear free vibration of skew nanoplates with surface and small scale effects. Thin Walled Struct. 78, 48–56 (2014)

    Article  Google Scholar 

  23. Panyatong, M., Chinnaboon, B., Chucheepsakul, S.: Incorporated effects of surface stress and nonlocal elasticity on bending analysis of nanoplates embedded in an elastic medium. Suranaree J. Sci. Technol. 22(1), 21–33 (2015)

    Google Scholar 

  24. Ansari, R., Gholami, R.: Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory. Compos. B Eng. 95, 301–316 (2016)

    Article  Google Scholar 

  25. Sapsathiarn, Y., Rajapakse, R.K.N.D.: Static and dynamic analyses of nanoscale rectangular plates incorporating surface energy. Acta Mech. 228, 2849–2863 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ebrahimi, F., Dabbagh, A.: Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory. Eur. Phys. J. Plus 132(11), 449 (2017)

    Article  Google Scholar 

  27. Yang, Y., Zou, J., Lee, K.Y., Li, X.F.: Bending of circular nanoplates with consideration of surface effects. Meccanica 53, 985–999 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sahmani, S., Aghdam, M.M., Bahrami, M.: Nonlinear buckling and postbuckling behavior of cylindrical nanoshells subjected to combined axial and radial compressions incorporating surface stress effects. Compos. B Eng. 79, 676–691 (2015)

    Article  Google Scholar 

  29. Rouhi, H., Ansari, R., Darvizeh, M.: Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect. Int. J. Mech. Sci. 113, 1–9 (2016)

    Article  MATH  Google Scholar 

  30. Sahmani, S., Bahrami, M., Aghdam, M.M.: Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to torsional load. Compos. B Eng. 84, 140–154 (2016)

    Article  MATH  Google Scholar 

  31. Lu, T., Chen, C., Zhao, K., Zhang, W., Wang, T.J.: Bulge test at nano-scale: the surface effects. Appl. Phys. Lett. 103, 053110 (2013)

    Article  Google Scholar 

  32. Drozdov, A.D., deClaville, C.J.: Apparent stiffening of a graphene nanomembrane with initial curvature. AIP Adv. 7, 045123 (2017)

    Article  Google Scholar 

  33. Drozdov, A.D., deClaville, C.J.: Bending of multilayer nanomembranes. Compos. Struct. 182, 261–272 (2017)

    Article  Google Scholar 

  34. Katsikadelis, J.T.: The analog boundary integral equation method for nonlinear static and dynamic problem in continuum mechanics. J. Theor. Appl. Mech. 40(4), 961–984 (2002)

    Google Scholar 

  35. Chinnaboon, B., Chucheepsakul, S., Katsikadelis, J.T.: A BEM-based meshless method for elastic buckling analysis of plates. Int. J. Struct. Stabil. Dyn. 7(1), 81–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chinnaboon, B., Chucheepsakul, S., Katsikadelis, J.T.: A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions. Comput. Methods Appl. Mech. Eng. 200, 1379–1388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Katsikadelis, J.T., Babouskos, N.G.: Post-buckling analysis of viscoelastic plates with fractional derivative models. Eng. Anal. Bound. Elem. 34(12), 1038–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Katsikadelis, J.T., Babouskos, N.G.: Stiffness and buckling optimization of thin plates with BEM. Arch. Appl. Mech. 82, 1403–1422 (2012)

    Article  MATH  Google Scholar 

  39. Nerantzaki, M.S., Babouskos, N.G.: Analysis of inhomogeneous anisotropic viscoelastic bodies described by multi-parameter fractional differential constitutive models. Comput. Mathod Appl. 62(3), 945–960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nerantzaki, M.S., Babouskos, N.G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 36(12), 1894–1907 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tsiatas, G.C., Yiotis, A.J.: A BEM-based meshless solution to buckling and vibration problems of orthotropic plate. Eng. Anal. Bound. Elem. 37(3), 579–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Panyatong, M., Chinnaboon, B., Chucheepsakul, S.: Nonlinear bending analysis of nonlocal nanoplates with general shapes and boundary conditions by the boundary-only method. Eng. Anal. Bound. Elem. 87, 90–110 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Panyatong, M., Chinnaboon, B., Chucheepsakul, S.: Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions. Struct. Eng. Mech. 71(6), 627–641 (2019)

    MATH  Google Scholar 

  44. Ansari, R., Gholami, R.: Surface effect on the large amplitude periodic forced vibration of first-order shear deformable rectangular nanoplates with various edge supports. Acta Astron. 118, 72–89 (2016)

    Article  Google Scholar 

  45. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R., Darabi, M.A.: A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations. Int. J. Non Linear Mech. 67, 16–26 (2014)

    Article  Google Scholar 

  46. Lu, L., Guo, X., Zhao, J.: On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. Int. J. Eng. Sci. 124, 24–40 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lu, L., Guo, X., Zhao, J.: A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl. Math. Model. 68, 583–602 (2019)

    Article  MathSciNet  Google Scholar 

  48. Storakers, B.: Variation principles and bounds for the approximate analysis of plane membranes under lateral pressure. ASME J. Appl. Mech. 50, 743–749 (1983)

    Article  MATH  Google Scholar 

  49. Kao, R., Perrone, N.: Large deflections of flat arbitrary membranes. Comput. Struct 2, 535–546 (1972)

    Article  Google Scholar 

  50. Asemi, S.R., Farajpour, A.: Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects. Physica E 60, 80–90 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Thailand Research Fund (TRF) and the Office of the Higher Education Commission under the Grant No. MRG6280098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monchai Panyatong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyatong, M., Chinnaboon, B. & Chucheepsakul, S. Influences of surface effects on large deflections of nanomembranes with arbitrary shapes by the coupled BE-RBFs method. Arch Appl Mech 90, 1157–1177 (2020). https://doi.org/10.1007/s00419-020-01662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01662-x

Keywords

Navigation