Skip to main content
Log in

Nonlinear static bending of single-crystalline circular nanoplates with cubic material anisotropy

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, a model is presented for nonlinear static bending of single circular nanoplates with cubic material anisotropy. The material anisotropy is modeled based on Zener ratio for which some new functions are presented to get closer formulations. The Ritz and Galerkin weighted residual methods are used to solve the derived nonlinear differential equation using different deflection surfaces defining two integral functions for material anisotropy in polar coordinate. The results show that the deflection surface remains approximately axisymmetric even at extreme material anisotropy levels similar to orthotropic materials. This is verified by FEM too. The comprehensive results are presented and discussed for the mostly used materials at MEMS/NEMS technology including Ag, Au, Al, Si, Ni, Mo, Cu and W single-crystalline nanoplates. It is observed that the size scale effects related to material surface stresses are greater for BCC nanoplates in comparison with FCC ones. Moreover, the Poisson’s ratio in [100] direction plays an essential role in the problem which is evaluated carefully. Finally, the effective Young’s modulus of the nanoplates with 10–80 nm of thickness is compared by the experiments for Ag nanowires using a correction factor due to lack of direct experiments for nanoplates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

(\(r, \theta , z\)):

Cylindrical coordinates

[100], [110] and [010]:

Standard crystallographic directions

(001) and (111):

Crystallographic planes

\(E_{\theta } \) :

Young’s modulus

\(\nu _{\theta } \) :

Poisson’s ratio

\(G_{\theta } \) :

Shear modulus

\(E_{[100]}\) and \(E_{[ 110 ]}\) :

Young’s modulus in [100] and [110] directions

\(\nu _{[100]} \) :

Poisson’s ratio in [100] direction

\(G_{[100]} \) and \(G_{[110]} \) :

Shear modulus in [100] and [110] directions

\(E^\mathrm{eff}\) :

Effective Young’s modulus

\(\tau ^{\mathrm{s}}, \tau _{0}\) :

Surface residual stress

\(E^{\mathrm{s}}\) :

Material surface elasticity

\(\sigma _{ij}^{\mathrm{Res}}\) :

Bulk residual stresses

\(R_{E}\) :

Anisotropy ratio

\(R_{\mathrm{Zen}} \) :

Zener ratio

\({[ S_{[ {100}]} ]}\) :

Compliance or flexibility matrix

\({[ T_{\theta } ]}\) :

Transformation matrix

[R]:

Engineering-tensor interchange matrix

\(\varepsilon _{r\theta }^{\mathrm{Res}} \) :

Residual strain components

\(N_{ii}^{\mathrm{Res}} \) :

Normal residual loads

\(D_{[100]}^\mathrm{eff} \) :

Effective flexural rigidity in [100 direction]

\(\,B_{[100]}^\mathrm{eff} \) :

Effective extensional rigidity in [100 direction]

\(\psi _{\theta }\) and \(\varphi _{\theta }\) :

Flexural rigidity orientation functions

\(\oint _1 \) :

1st integral function

\(\oint _2 \) :

2nd integral function

\({\bar{W}}={\tilde{w}}/h\) :

Normalized deflection

\(X=r/R\) :

Normalized radius

\(\eta =R/h\) :

Nanoplates’ aspect ratio

References

  1. Guével, X.L., Wang, F.Y., Stranik, O., Nooney, R., Gubala, V., McDonagh, C., MacCraith, B.D.: Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications. J. Phys. Chem. C 113, 16380–16386 (2009)

    Google Scholar 

  2. Ni, Y., Kan, C., Xu, J., Liu, Y.: The synthesis of high yield Au nanoplate and optimized optical properties. Superlattices Microstruct. 114, 124–142 (2018)

    Google Scholar 

  3. Sun, Y., Xu, L., Yin, Z., Song, X.: Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. J. Mater. Chem. A. 1, 12361–12370 (2013)

    Google Scholar 

  4. McDowell, M.T., Leach, A.M., Gall, K.: On the elastic modulus of metallic nanowires. Nano Lett. 8, 3613–3618 (2008)

    Google Scholar 

  5. Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.: Mechanical properties of Zno Nanowires under different loading modes. Nano Res. 3, 271–280 (2010)

    Google Scholar 

  6. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1–6 (2006)

    Google Scholar 

  7. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Google Scholar 

  8. Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  9. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 71, 1–11 (2005)

    Google Scholar 

  10. Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)

    MATH  Google Scholar 

  11. Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)

    MATH  Google Scholar 

  12. Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

    MATH  Google Scholar 

  13. Liu, Y., Ji, X., Wang, D., He, J.: Modeling thin structures incorporated with surface effects by using layered shell elements. Eur. J. Mech. A/Solids 74, 139–144 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Google Scholar 

  15. Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E Low-Dimensional Syst. Nanostruct. 44, 448–453 (2011)

    Google Scholar 

  16. Liu, S., Yu, T., Lich, L.V., Yin, S., Bui, T.Q.: Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput. Struct. 212, 173–187 (2019)

    Google Scholar 

  17. Wang, K.F., Wang, B.L., Xu, M.H., Yu, A.B.: Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates. Compos. Struct. 183, 423–433 (2017)

    Google Scholar 

  18. Yang, Y., Zou, J., Lee, K.Y., Li, X.F.: Bending of circular nanoplates with consideration of surface effects. Meccanica 53, 985–999 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Zhou, S., Zhang, R., Zhou, S., Li, A.: Free vibration analysis of bilayered circular micro-plate including surface effects. Appl. Math. Model. 70, 54–66 (2019)

    MathSciNet  Google Scholar 

  20. Assadi, A., Farshi, B.: Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Phys. E Low-Dimensional Syst. Nanostruct. 43, 1111–1117 (2011)

    Google Scholar 

  21. Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108, 1–5 (2010)

    Google Scholar 

  22. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S.: Surface Stress Effect on the Vibrational Response of Circular Nanoplates With Various Edge Supports. J. Appl. Mech. 80, 021021 (2012)

    Google Scholar 

  23. Schilling, R., Schütz, H., Ghadimi, A.H., Sudhir, V., Wilson, D.J., Kippenberg, T.J.: Near-field integration of a SiN nanobeam and a \(\text{ SiO }_2\) microcavity for Heisenberg-limited displacement sensing. Phys. Rev. Appl. 5, 1–17 (2016)

    Google Scholar 

  24. Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529–530 (1976)

    Google Scholar 

  25. Song, F., Huang, G.L., Park, H.S., Liu, X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)

    Google Scholar 

  26. Karimi, M., Mirdamadi, H.R., Shahidi, A.R.: Shear vibration and buckling of double-layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects. Microsyst. Technol. 23, 765–797 (2017)

    Google Scholar 

  27. Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the Young’s modulus of silicon? J. Microelectromechan. Syst. 19, 229–238 (2010)

    Google Scholar 

  28. Keller, C., Habraken, A.M., Duchene, L.: Finite element investigation of size effects on the mechanical behavior of nickel single crystals. Mater. Sci. Eng. A 550, 342–349 (2012)

    Google Scholar 

  29. Norris, A.N.: Poisson’s ratio in cubic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 3385–3405 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Hearmon, R.F.S.: The elastic constants of anisotropic materials. Adv. Phys. 18, 409 (1946)

    Google Scholar 

  31. Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971)

    Google Scholar 

  32. Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of materials by means of indentation. J. Mech. Phys. Solids 42, 1223–1245 (1994)

    Google Scholar 

  33. Boyd, E.J., Uttamchandani, D.: Measurement of the anisotropy of young’s modulus in single-crystal silicon. J. Microelectromech. Syst. 21, 243–249 (2012)

    Google Scholar 

  34. Feibelman, J.: Anisotropy of the stress on fcc(110) surfaces. Phys. Rev. B Condens. Matter 51, 867–875 (1995)

    Google Scholar 

  35. Mouloodi, S., Khojasteh, J., Salehi, M., Mohebbi, S.: Size dependent free vibration analysis of multicrystalline nanoplates by considering surface effects as well as interface region. Int. J. Mech. Sci. 85, 160–167 (2014)

    Google Scholar 

  36. Assadi, A., Salehi, M., Akhlaghi, M.: Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy. Phys. Lett. Sect. A Gen. At. Solid State Phys. 379, 1437–1444 (2015)

    MathSciNet  Google Scholar 

  37. Assadi, A., Akhlaghi, M., Salehi, M.: Some modifications in evaluation of the size effects related to surface stresses in nanostructures. Phys. E Low-Dimensional Syst. Nanostruct. 68, 190–201 (2015)

    Google Scholar 

  38. Mohammadzadeh-Keleshteri, M., Samie-Anarestani, S., Assadi, A.: Large deformation analysis of single-crystalline nanoplates with cubic anisotropy. Acta Mech. 228, 3345–3368 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Hertzberg, R.W., Vinci, R.P., Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (2012)

    Google Scholar 

  40. Zhu, R., Pan, E., Chung, P.W., Cai, X., Liew, K.M., Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21, 906–911 (2006)

    Google Scholar 

  41. Bar On, B., Altus, E., Tadmor, E.B.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47, 1243–1252 (2010)

    MATH  Google Scholar 

  42. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Google Scholar 

  43. Khanaliloo, B., Jayakumar, H., Hryciw, A.C., Lake, D.P., Kaviani, H., Barclay, P.E.: Single-crystal diamond nanobeam waveguide optomechanics. Phys. Rev. X. 5, 1–21 (2015)

    Google Scholar 

  44. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC, Boca Raton (2006)

    Google Scholar 

  45. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Weinheim (2005)

    MATH  Google Scholar 

  46. Sathyamoorthy, M.: Transverse Shear and Rotatory Inertia Effects on Nonlinear Vibration of orthotropic circular plates. Comput. Struct. 14, 129–134 (1981)

    MATH  Google Scholar 

  47. Fu, L., Waas, A.M.: Buckling of polar and rectilinearly orthotropic annuli under uniform internal or external pressure loading. Compos. Struct. 22, 47–57 (1992)

    Google Scholar 

  48. Ying-jian, W.: Large deflection problem of thin orthotropic circular plate with variable thickness under uniform pressure. Appl. Math. Mech. 11, 343–353 (1990)

    MATH  Google Scholar 

  49. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics, 3rd edn. Elsevier, Amsterdam (2014)

    Google Scholar 

  50. Sapsathiarn, Y., Rajapakse, R.K.N.D.: Finite-element modeling of circular nanoplates. J. Nanomech. Micromech. 3, 59–66 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Assadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, A., Najaf, H. Nonlinear static bending of single-crystalline circular nanoplates with cubic material anisotropy. Arch Appl Mech 90, 847–868 (2020). https://doi.org/10.1007/s00419-019-01643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01643-9

Keywords

Navigation