Skip to main content
Log in

Accurate free vibration solutions of orthotropic rectangular thin plates by straightforward finite integral transform method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper aims to obtain the analytical free vibration solution of an orthotropic rectangular thin plate using the finite integral transformation. Due to the mathematical difficulty of complex boundary value problems, it is very hard to solve the title problem with common analytical methods. By imposing the integral transformation, the high-order partial differential equation with specified boundary conditions is converted into linear algebraic equation and the exact solutions with high precision and fast convergence are obtained elegantly. The main advantage of the proposed method is that it is simple and general, and it does not need to pre-determine the deflection function, which makes the solution procedure more reasonable. The method has a wide range of applications and can deal with other elastic plate problems, such as buckling and bending. The present results are validated by comparison with the existing analytical solutions that showed satisfactory agreement. The new analytical solution obtained can be used as a benchmark for validating other numerical and approximate methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biancolini, M.E., Brutti, C., Reccia, L.: Approximate solution for free vibrations of thin orthotropic rectangular plates. J. Sound Vib. 288, 321–344 (2005). https://doi.org/10.1016/j.jsv.2005.01.005

    Article  Google Scholar 

  2. Rossi, R.E., Bambill, D.V., Laura, P.A.A.: Vibrations of a rectangular orthotropic plate with a free edge: a comparison of analytical and numerical results. Ocean Eng. 25, 521–527 (1998). https://doi.org/10.1016/S0029-8018(97)00022-X

    Article  Google Scholar 

  3. Chen, W.Q., Lü, C.F.: 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported. Compos. Struct. 69, 77–87 (2005). https://doi.org/10.1016/j.compstruct.2004.05.015

    Article  Google Scholar 

  4. Richard, J.: Sylvester: buckling of sandwich cylinders under axial load. J. Aerosp. Sci. 29, 863–872 (1962). https://doi.org/10.2514/8.9620

    Article  MATH  Google Scholar 

  5. Bhat, R.B.: Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh–Ritz method. J. Sound Vib. 102, 493–499 (1985)

    Article  Google Scholar 

  6. Dickinson, S.M., Di Blasio, A.: On the use of orthogonal polynomials in the Rayleigh–Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J. Sound Vib. 108, 51–62 (1986)

    Article  Google Scholar 

  7. Eftekhari, S.A., Jafari, A.A.: Accurate variational approach for free vibration of simply supported anisotropic rectangular plates. Arch. Appl. Mech. 84, 607–614 (2014). https://doi.org/10.1007/s00419-013-0812-z

    Article  MATH  Google Scholar 

  8. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. B Eng. 44, 657–674 (2013)

    Article  Google Scholar 

  9. Zhou, D., Cheung, Y.K., Kong, J.: Free vibration of thick, layered rectangular plates with point supports by finite layer method. Int. J. Solids Struct. 37, 1483–1499 (2000)

    Article  Google Scholar 

  10. Bodaghi, M., Saidi, A.R.: Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. Appl. Mech. 81, 1555–1572 (2011)

    Article  Google Scholar 

  11. Mercan, K., Civalek, Ö.: Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos. B Eng. 114, 34–45 (2017). https://doi.org/10.1016/j.compositesb.2017.01.067

    Article  Google Scholar 

  12. Demir, Ç., Civalek, Ö.: A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos. Struct. 168, 872–884 (2017). https://doi.org/10.1016/j.compstruct.2017.02.091

    Article  Google Scholar 

  13. Civalek, Ö.: Numerical solutions to the free vibration problem of Mindlin sector plates using the discrete singular convolution method. Int. J. Struct. Stab. Dyn. 9, 267–284 (2009)

    Article  Google Scholar 

  14. Civalek, Ö., Ozturk, B.: Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method. Struct. Eng. Mech. 36, 279–299 (2010)

    Article  Google Scholar 

  15. Mercan, K., Civalek, Ö.: DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos. Struct. 143, 300–309 (2016). https://doi.org/10.1016/j.compstruct.2016.02.040

    Article  Google Scholar 

  16. Demir, Ç., Mercan, K., Civalek, Ö.: Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel. Compos. B Eng. 94, 1–10 (2016). https://doi.org/10.1016/j.compositesb.2016.03.031

    Article  Google Scholar 

  17. Civalek, Ö.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. B Eng. 111, 45–59 (2017). https://doi.org/10.1016/j.compositesb.2016.11.030

    Article  Google Scholar 

  18. Akgoz, B., Civalek, O.: Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel Compos. Struct. 11(5), 403–421 (2011)

    Article  Google Scholar 

  19. Wu, Y., Xing, Y., Liu, B.: Analysis of isotropic and composite laminated plates and shells using a differential quadrature hierarchical finite element method. Compos. Struct. 205, 11–25 (2018). https://doi.org/10.1016/j.compstruct.2018.08.095

    Article  Google Scholar 

  20. Thai, H.-T., Kim, S.-E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015). https://doi.org/10.1016/j.compstruct.2015.03.010

    Article  Google Scholar 

  21. Liew, K.M., Zhao, X., Ferreira, A.J.M.: A review of meshless methods for laminated and functionally graded plates and shells. Compos. Struct. 93, 2031–2041 (2011). https://doi.org/10.1016/j.compstruct.2011.02.018

    Article  Google Scholar 

  22. Bui, T.Q., Nguyen, M.N., Zhang, C.: Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method. Eng. Anal. Boundary Elem. 35, 1038–1053 (2011). https://doi.org/10.1016/j.enganabound.2011.04.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, X., Liew, K.M.: Free vibration analysis of functionally graded conical shell panels by a meshless method. Compos. Struct. 93, 649–664 (2011)

    Article  Google Scholar 

  24. Fallah, A., Aghdam, M.M., Kargarnovin, M.H.: Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method. Arch. Appl. Mech. 83, 177–191 (2013). https://doi.org/10.1007/s00419-012-0645-1

    Article  MATH  Google Scholar 

  25. Sakata, T., Takahashi, K., Bhat, R.B.: Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation. J. Sound Vib. 189, 89–101 (1996). https://doi.org/10.1006/jsvi.1996.9999

    Article  MATH  Google Scholar 

  26. Singhatanadgid, P., Taranajetsada, P.: Vibration analysis of stepped rectangular plates using the extended Kantorovich method. Mech. Adv. Mater. Struct. 23, 201–215 (2016). https://doi.org/10.1080/15376494.2014.949922

    Article  Google Scholar 

  27. Park, S.-J.: Three-dimensional free vibration analysis of orthotropic plates. J. Korean Soc. Disaster Inf. 10, 1–14 (2014)

    Article  Google Scholar 

  28. Ganesh, S., Kumar, K.S., Mahato, P.K.: Free vibration analysis of delaminated composite plates using finite element method. Procedia Eng. 144, 1067–1075 (2016). https://doi.org/10.1016/j.proeng.2016.05.061

    Article  Google Scholar 

  29. Hu, N., Fukunaga, H., Kameyama, M., Aramaki, Y., Chang, F.K.: Vibration analysis of delaminated composite beams and plates using a higher-order finite element. Int. J. Mech. Sci. 44, 1479–1503 (2002)

    Article  Google Scholar 

  30. Ju, F., Lee, H.P., Lee, K.H.: Finite element analysis of free vibration of delaminated composite plates. Compos. Eng. 5, 195–209 (1995). https://doi.org/10.1016/0961-9526(95)90713-L

    Article  Google Scholar 

  31. Rock, T.A., Hinton, E.: A finite element method for the free vibration of plates allowing for transverse shear deformation. Comput. Struct. 6, 37–44 (1976)

    Article  Google Scholar 

  32. Bahmyari, E., Rahbar-Ranji, A.: Free vibration analysis of orthotropic plates with variable thickness resting on non-uniform elastic foundation by element free Galerkin method. J. Mech. Sci. Technol. 26, 2685–2694 (2012)

    Article  Google Scholar 

  33. Talebitooti, R., Zarastvand, M., Rouhani, A.S., Talebitooti, R., Zarastvand, M., Rouhani, A.S.: Investigating Hyperbolic Shear Deformation Theory on vibroacoustic behavior of the infinite Functionally Graded thick plate. Latin Am. J. Solids Struct. (2019). https://doi.org/10.1590/1679-78254883

    Article  Google Scholar 

  34. Talebitooti, R., Gohari, H.D., Zarastvand, M.R.: Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating non-dominated sorting genetic algorithm. Aerosp. Sci. Technol. 69, 269–280 (2017). https://doi.org/10.1016/j.ast.2017.06.008

    Article  Google Scholar 

  35. Talebitooti, R., Zarastvand, M.R.: The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell. Aerosp. Sci. Technol. 78, 157–170 (2018). https://doi.org/10.1016/j.ast.2018.03.010

    Article  Google Scholar 

  36. Talebitooti, R., Zarastvand, M.R., Gohari, H.D.: The influence of boundaries on sound insulation of the multilayered aerospace poroelastic composite structure. Aerosp. Sci. Technol. 80, 452–471 (2018). https://doi.org/10.1016/j.ast.2018.07.030

    Article  Google Scholar 

  37. Talebitooti, R., Zarastvand, M.R.: Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the Third order Shear Deformation Theory. Aerosp. Sci. Technol. 75, 227–236 (2018). https://doi.org/10.1016/j.ast.2018.01.011

    Article  Google Scholar 

  38. Talebitooti, R., Zarastvand, M., Darvishgohari, H.: Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure. J Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636219854748

    Article  Google Scholar 

  39. Ghassabi, M., Talebitooti, R., Zarastvand, M.R.: State vector computational technique for three-dimensional acoustic sound propagation through doubly curved thick structure. Comput. Methods Appl. Mech. Eng. 352, 324–344 (2019). https://doi.org/10.1016/j.cma.2019.04.011

    Article  MathSciNet  Google Scholar 

  40. Talebitooti, R., Johari, V., Zarastvand, M., Talebitooti, R., Johari, V., Zarastvand, M.: Wave transmission across laminated composite plate in the subsonic flow Investigating Two-variable Refined Plate Theory. Latin Am. J. Solids Struct. (2018). https://doi.org/10.1590/1679-78254352

    Article  Google Scholar 

  41. Thai, H.-T., Kim, S.-E.: Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory. Appl. Math. Model. 36, 3870–3882 (2012). https://doi.org/10.1016/j.apm.2011.11.003

    Article  MathSciNet  MATH  Google Scholar 

  42. Hosseini Hashemi, S., Atashipour, S.R., Fadaee, M.: An exact analytical approach for in-plane and out-of-plane free vibration analysis of thick laminated transversely isotropic plates. Arch Appl Mech. 82, 677–698 (2012). https://doi.org/10.1007/s00419-011-0583-3

    Article  MATH  Google Scholar 

  43. Bodaghi, M., Saidi, A.R.: Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Arch. Appl. Mech. 81, 765–780 (2011). https://doi.org/10.1007/s00419-010-0449-0

    Article  MATH  Google Scholar 

  44. Gorman, D.J.: Free vibration analysis of cantilever plates by the method of superposition. J. Sound Vib. 49, 453–467 (1976). https://doi.org/10.1016/0022-460x(76)90828-2

    Article  MATH  Google Scholar 

  45. Xing, Y.F., Liu, B.: Exact solutions for the free in-plane vibrations of rectangular plates. Int. J. Mech. Sci. 51, 246–255 (2009). https://doi.org/10.1016/j.ijmecsci.2008.12.009

    Article  MATH  Google Scholar 

  46. Liu, B., Xing, Y.: Exact solutions for free vibrations of orthotropic rectangular Mindlin plates. Compos. Struct. 93, 1664–1672 (2011). https://doi.org/10.1016/j.compstruct.2011.01.014

    Article  Google Scholar 

  47. Li, R., Tian, Y., Wang, P., Shi, Y., Wang, B.: New analytic free vibration solutions of rectangular thin plates resting on multiple point supports. Int. J. Mech. Sci. 110, 53–61 (2016)

    Article  Google Scholar 

  48. Li, R., Wang, B., Li, G., Du, J., An, X.: Analytic free vibration solutions of rectangular thin plates point-supported at a corner. Int. J. Mech. Sci. 96, 199–205 (2015)

    Article  Google Scholar 

  49. Li, R., Wang, P., Xue, R., Guo, X.: New analytic solutions for free vibration of rectangular thick plates with an edge free. Int. J. Mech. Sci. 131, 179–190 (2017)

    Article  Google Scholar 

  50. Timoshenko, S.P.: Theory of Elastic Stability, 2nd edn. McGraw-Hill Book Company, New York (1961)

    Google Scholar 

  51. Yao, W., Zhong, W., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    Book  Google Scholar 

  52. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63, 050802 (2010). https://doi.org/10.1115/1.4003700

    Article  Google Scholar 

  53. Li, R., Zheng, X., Yang, Y., Huang, M., Huang, X.: Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels. Appl. Math. Model. 76, 900–917 (2019). https://doi.org/10.1016/j.apm.2019.07.020

    Article  MathSciNet  Google Scholar 

  54. Zheng, X., Sun, Y., Huang, M., An, D., Li, P., Wang, B., Li, R.: Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels. Int. J. Mech. Sci. 152, 432–442 (2019). https://doi.org/10.1016/j.ijmecsci.2019.01.012

    Article  Google Scholar 

  55. Xing, Y.F., Xu, T.F.: Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions. Compos. Struct. 104, 187–195 (2013)

    Article  Google Scholar 

  56. Liu, B., Xing, Y.: Exact solutions for free vibrations of orthotropic rectangular Mindlin plates. Compos. Struct. 93, 1664–1672 (2011)

    Article  Google Scholar 

  57. Liu, B., Xing, Y.F., Reddy, J.N.: Exact compact characteristic equations and new results for free vibrations of orthotropic rectangular Mindlin plates. Compos. Struct. 118, 316–321 (2014)

    Article  Google Scholar 

  58. Xing, Y.F., Liu, B.: New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos. Struct. 89, 567–574 (2009). https://doi.org/10.1016/j.compstruct.2008.11.010

    Article  Google Scholar 

  59. Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22, 1821–1827 (2009). https://doi.org/10.1016/j.aml.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  60. Tian, B., Li, R., Zhong, Y.: Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations. Appl. Math. Model. 39, 128–136 (2015)

    Article  MathSciNet  Google Scholar 

  61. Zhong, Y., Zhao, X.-F., Li, R.: Free vibration analysis of rectangular cantilever plates by finite integral transform method. Int. J. Comput. Methods Eng. Sci. Mech. 14, 221–226 (2013). https://doi.org/10.1080/15502287.2012.711424

    Article  MathSciNet  Google Scholar 

  62. Zhong, Y., Zhao, X., Liu, H.: Vibration of plate on foundation with four edges free by finite cosine integral transform method. Latin Am. J. Solids Struct. 11, 854–863 (2014). https://doi.org/10.1590/S1679-78252014000500008

    Article  Google Scholar 

  63. Bidgoli, A.M.M., Daneshmehr, A.R., Kolahchi, R.: Analytical bending solution of fully clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method. J. Appl. Comput, Mech (2015). https://doi.org/10.22055/jacm.2014.10742

    Google Scholar 

  64. Ike, C.: Flexural analysis of Kirchhoff plates on Winkler foundations using finite Fourier sine integral transform method. Math. Model. Eng. Problems 4, 145–154 (2017). https://doi.org/10.18280/mmep.040402

    Article  Google Scholar 

  65. Nwoji, C.U., Mama, B.O., Onah, H.N., Ike, C.C.: Flexural analysis of simply supported rectangular Mindlin plates under bisinusoidal transverse load. APRN J. Eng. Appl. Sci. 13, 4480–4488 (2018)

    Google Scholar 

  66. Simulia, D.S.: Abaqus 6.13 Analysis User’s Guide. Dassault Systems, Providence (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salamat Ullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ullah, S. & Zhong, Y. Accurate free vibration solutions of orthotropic rectangular thin plates by straightforward finite integral transform method. Arch Appl Mech 90, 353–368 (2020). https://doi.org/10.1007/s00419-019-01613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01613-1

Keywords

Navigation