Skip to main content
Log in

Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present paper, the optimization problem of the dynamic vibration absorbers (DVAs) for suppressing vibrations in thin plates within the wide frequency band is investigated. It is considered that the plate has simply supported edges and is subjected to a concentrated harmonic force. The vibration suppression is accomplished by the implementation of multiple mass–spring absorbers in order to minimize the plate deflection at the natural frequencies of the plate without absorbers. The governing equations of the plate equipped with DVAs for both isotropic and FG plates are derived and solved numerically and analytically. The formulation of the problem is capable of optimizing the \(L_{2}\) norm of the plate deflection at the wide frequency band with respect to mass, stiffness and position of each absorber attachment point. In this study, the possibility of simultaneous absorption of one or multiple natural frequencies of the plate without any absorbers is also studied. Some numerical results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(F_{{0}},F_{0}^{*}\) :

Dimensional and dimensionless amplitudes of excitation forcing, respectively

\(\varOmega ,\alpha \) :

Dimensional and dimensionless excitation frequency, respectively

\(t,\tau \) :

Dimensional and dimensionless time, respectively

\(\left( X_{{0}},Y_{{0}} \right) ,\left( x_{{0}},y_{{0}} \right) \) :

Dimensional and dimensionless coordinates of applying point of the force, respectively

\(\left( X_{j},Y_{j} \right) ,\left( x_{j},y_{j} \right) \) :

Dimensional and dimensionless coordinates of jth absorber attachment point, respectively

\(\left( X,Y \right) ,\left( x,y \right) \) :

Dimensional and dimensionless coordinates of an arbitrary point of the plate, respectively

\(M_{j},M_{j}^{*}\) :

Dimensional and dimensionless masses of jth absorber, respectively

\(k_{j},k_{j}^{*}\) :

Dimensional and dimensionless stiffnesses of jth absorber, respectively

\(u_{j},q_{j}\) :

Dimensional and dimensionless mass displacement of jth absorber with respect to a fixed reference point, respectively

\(Q_{j}\) :

Amplitude of \(q_{j}\)

abh :

Length, width, and thickness of the plate, respectively

N :

Number of dynamic absorbers

\(\bar{W}\left( X,Y,t \right) ,W\left( x,y,t \right) \) :

Dimensional and dimensionless deflection of plate, respectively

\(w\left( x,y \right) \) :

Amplitude of the dimensionless deflection of plate

\(a_{mn}\) :

Coefficients of the plate mode shapes or components of \(\vec {a}\)

EE(z):

Elasticity modulus of isotropic and FG plates, respectively

\(\nu \) :

Poisson’s ration

D :

Flexural or bending rigidity of the plate

\(\rho ,\rho (z)\) :

Density of the isotropic and FG plates, respectively

\(\delta \left( . \right) \) :

Delta Dirac function

c :

Wave velocity in the plate

\(\beta \) :

Aspect ratio (ratio of the plate length to its width)

\(\mu _{j}\left( \alpha \right) , \lambda _{j}\left( \alpha \right) , \tau _{lj}\left( \alpha \right) , \rho _{j}(\alpha )\) :

Predefined parameters

\(\alpha _{mn}\) :

Dimensionless natural frequencies of the bare plate (plate without absorber)

\(f_{mn}\left( x,y \right) , g_{mn}\left( x,y \right) , \psi \left( x,y,z,v,\alpha \right) ,\theta \left( x,y,z,v,\alpha _{rs} \right) P_{jmnpq}\left( x,y \right) ,Q_{jmnpq}\left( x,y \right) , R_{jmnpq}\left( x,y \right) ,S_{jmnpq}\left( x,y \right) \) :

Predefined functions

\(A_{mnpq}\left( \alpha \right) ,B_{mnpq}\left( \alpha \right) ,B_{imnpq}\left( \alpha \right) \) ,\(C_{imnpq}\left( \alpha \right) ,D_{imnpq}\left( \alpha \right) \) :

Entries of matrices \({\varvec{A}}\left( \alpha \right) ,{\varvec{B}}\left( \alpha \right) ,{\varvec{B}}_{i}\left( \alpha \right) ,{\varvec{C}}_{i}\left( \alpha \right) ,{\varvec{D}}_{i}\left( \alpha \right) \)

\(\gamma _{pq}\left( \alpha \right) \) :

Components of the vector \(\vec {d}\)

\(\delta _{mp}\) :

Kronecker delta

\(A_{11},B_{11},D_{11},A_{12},B_{12},D_{12},A_{33},B_{33},D_{33},I_{0},I_{1},I_{2}\) :

Materials constants defined for FG plate

\(D^{*},I_{1}^{*},I_{2}^{*}\) :

Dimensionless parameters defined in terms of materials constants of FG plate

\(\left\| w \right\| \) :

\(L_{{2}}\) norm of the plate deflection

\(\vec {e}\) :

A predefined vector with components \(f_{pq}\left( x_{{0}},y_{{0}} \right) \)

\(N_\mathrm{f}\) :

Number of the natural frequencies of the bare plate

\(N_{{1}},N_{{2}}\) :

Numbers of indexes chosen for r and s in frequency \(\alpha _{rs}\)

\({\varvec{J}}_{{4}N\times 4N}\) :

Jacobian matrix

\(A_{j},B_{j},\theta _{{11}},\theta _{12},\theta _{22},\theta _{{01}},\theta _{02}\) :

Predefined constants

References

  1. Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117, 234–242 (1995)

    Google Scholar 

  2. Ishida, Y.: Recent development of the passive vibration control method. Mech. Syst. Signal Process. 29, 2–18 (2012)

    Google Scholar 

  3. Kolovsky, M.Z.: Nonlinear Dynamics of Active and Passive Systems of Vibration Protection. Springer, Berlin (2013)

    Google Scholar 

  4. Mahadevaswamy, P., Suresh, B.S.: Optimal mass ratio of vibratory flap for vibration control of clamped rectangular plate. Ain Shams Eng. J. 7, 335–345 (2016)

    Google Scholar 

  5. Megahed, S.M., El-Razik, A.K.A.: Vibration control of two degrees of freedom system using variable inertia vibration absorbers: modeling and simulation. J. Sound Vib. 329, 4841–4865 (2010)

    Google Scholar 

  6. Tursun, M., Eşkinat, E.: H2 optimization of damped-vibration absorbers for suppressing vibrations in beams with constrained minimization. J. Vib. Acoust. 136, 21012 (2014)

    Google Scholar 

  7. Frahm, H.: Device for damping vibrations of bodies. U.S. Patent No. 989,958. U.S. Patent and Trademark Office, Washington, DC (1911)

  8. Ormondroyd, J.: The theory of the dynamic vibration absorber. Trans. ASME Appl. Mech. 50, 9–22 (1928)

    Google Scholar 

  9. Hahnkamm, E.: The damping of the foundation vibrations at varying excitation frequency. Master Archit. 4, 192–201 (1932)

    Google Scholar 

  10. Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, North Chelmsford (1985)

    MATH  Google Scholar 

  11. Vu, X.-T., Nguyen, D.-C., Khong, D.-D., Tong, V.-C.: Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degrees-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 237–252 (2018)

    Google Scholar 

  12. Hua, Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018)

    Google Scholar 

  13. Zhu, X., Chen, Z., Jiao, Y.: Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates. J. Low Freq. Noise Vib. Act. Control. https://doi.org/10.1177/1461348418794563 (2018)

  14. Kalehsar, H.E., Khodaie, N.: Optimization of response of a dynamic vibration absorber forming part of the main system by the fixed-point theory. KSCE J. Civ. Eng. 22, 2354–2361 (2018)

    Google Scholar 

  15. Noori, B., Farshidianfar, A.: Optimum design of dynamic vibration absorbers for a beam, based on H\(\infty \) and H2 optimization. Arch. Appl. Mech. 83, 1773–1787 (2013)

    MATH  Google Scholar 

  16. Nishihara, O.: Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust. 141, 11001 (2019)

    Google Scholar 

  17. Cheung, Y.L., Wong, W.O.: H\(\infty \) and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009)

    Google Scholar 

  18. Moradi, H., Sadighi, M., Bakhtiari-Nejad, F.: Optimum design of a tuneable vibration absorber with variable position to suppress vibration of a cantilever plate. Int. J. Acoust. Vib. 16, 55 (2011)

    Google Scholar 

  19. Jacquot, R.G.: Suppression of random vibration in plates using vibration absorbers. J. Sound Vib. 248, 585–596 (2001)

    Google Scholar 

  20. Faal, R.T., Amiri, M.B., Pirmohammadi, A.A., Milani, A.S.: Vibration analysis of undamped, suspended multi-beam absorber systems. Meccanica 47, 1059–1078 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Yamaguchi, H.: Damping of transient vibration by a dynamic absorber. Trans. Jpn. Soc. Mech. Eng. 54, 561 (1988)

    Google Scholar 

  22. Nishihara, O., Matsuhisa, H.: Design of a dynamic vibration absorber for minimization of maximum amplitude magnification factor (derivation of algebraic exact solution). Trans. Jpn. Soc. Mech. Eng. Ser. C. 63, 3438–3445 (1997)

    Google Scholar 

  23. Esmailzadeh, E., Jalili, N.: Optimum design of vibration absorbers for structurally damped Timoshenko beams. J. Vib. Acoust. 120, 833–841 (1998)

    Google Scholar 

  24. Brown, B., Singh, T.: Minimax design of vibration absorbers for linear damped systems. J. Sound Vib. 330, 2437–2448 (2011)

    Google Scholar 

  25. Fang, J., Wang, S.-M., Wang, Q.: Optimal design of vibration absorber using minimax criterion with simplified constraints. Acta Mech. Sin. 28, 848–853 (2012)

    MathSciNet  Google Scholar 

  26. Fang, J., Wang, Q., Wang, S., Wang, Q.: Min-max criterion to the optimal design of vibration absorber in a system with Coulomb friction and viscous damping. Nonlinear Dyn. 70, 393–400 (2012)

    MathSciNet  Google Scholar 

  27. Anh, N.D., Nguyen, N.X.: Design of non-traditional dynamic vibration absorber for damped linear structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 45–55 (2014)

    Google Scholar 

  28. Zilletti, M., Elliott, S.J., Rustighi, E.: Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib. 331, 4093–4100 (2012)

    Google Scholar 

  29. Yang, C., Li, D., Cheng, L.: Dynamic vibration absorbers for vibration control within a frequency band. J. Sound Vib. 330, 1582–1598 (2011)

    Google Scholar 

  30. Wang, Y.Z., Wang, K.S.: The optimal design of a dynamic absorber for an arbitrary planar structure. Appl. Acoust. 23, 85–98 (1988)

    Google Scholar 

  31. Viana, F.A.C., Kotinda, G.I., Rade, D.A., Steffen Jr., V.: Tuning dynamic vibration absorbers by using ant colony optimization. Comput. Struct. 86, 1539–1549 (2008)

    Google Scholar 

  32. Wong, W.O., Tang, S.L., Cheung, Y.L., Cheng, L.: Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading. J. Sound Vib. 301, 898–908 (2007)

    Google Scholar 

  33. Issa, J.S.: Vibration absorbers for simply supported beams subjected to constant moving loads. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226, 398–404 (2012)

    Google Scholar 

  34. Febbo, M., Vera, S.A.: Optimization of a two degree of freedom system acting as a dynamic vibration absorber. J. Vib. Acoust. 130, 11013 (2008)

    Google Scholar 

  35. Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P.: Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper. J. Vib. Control 18, 757–773 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Kukla, S.: Frequency analysis of a rectangular plate with attached discrete systems. J. Sound Vib. 264, 225–234 (2003)

    Google Scholar 

  37. Kukla, S., Szewczyk, M.: Frequency analysis of annular plates with elastic concentric supports by Green’s function method. J. Sound Vib. 300, 387–393 (2007)

    Google Scholar 

  38. Zur, K.K.: Green’s function for frequency analysis of thin annular plates with nonlinear variable thickness. Appl. Math. Model. 40, 3601–3619 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Żur, K.K.: Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos. Struct. 183, 600–610 (2018)

    Google Scholar 

  40. Żur, K.K.: Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method. Compos. Part B Eng. 144, 37–55 (2018)

    Google Scholar 

  41. Żur, K.K.: Quasi-Green’s function approach to fundamental frequency analysis of elastically supported thin circular and annular plates with elastic constraints. J. Theor. Appl. Mech. 55, 87–101 (2017)

    Google Scholar 

  42. Hou, P.-F., Chen, J.-Y.: A refined analysis for the transversely isotropic plate under tangential loads by the 3D Green’s function. Eng. Anal. Bound. Elem. 93, 10–20 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)

    Google Scholar 

  44. Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 526–536 (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Faal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Using the first equation of (19) for \(N=1\) we have

$$\begin{aligned} a_{pq}(\alpha= & {} \alpha _{rs})=4F_{0}^{*}\left. \Bigg \{f_{pq}\left( x_{0},y_{0} \right) +\mu _{1}\left( \alpha _{rs} \right) \left[ \theta _{01}f_{pq}\left( x_{1},y_{1} \right) -\theta _{11}f_{pq}\left( x_{0},y_{0} \right) \right] \right. \nonumber \\&+\,\left. \frac{f_{rs}\left( x_{0},y_{0} \right) f_{rs}\left( x_{1},y_{1} \right) f_{pq}\left( x_{1},y_{1} \right) -f_{rs}\left( x_{1},y_{1} \right) f_{rs}\left( x_{1},y_{1} \right) f_{pq}\left( x_{0},y_{0} \right) }{\epsilon }\right\} \Bigg / \nonumber \\&{(\alpha }_{pq}^{4}-\alpha _{rs}^{4})\left\{ 1-\mu _{1}\left( \alpha _{rs} \right) \left[ \theta _{11}+\frac{f_{rs}\left( x_{1},y_{1} \right) f_{rs}\left( x_{1},y_{1} \right) }{\epsilon }\right] \right\} ,\alpha _{mn}\rightarrow \alpha _{rs} \end{aligned}$$
(A.1)

where \(\theta _{{11}}=\theta \left( x_{{1}},y_{{1}},x_{{1}},y_{{1}},\alpha _{rs} \right) ,\theta _{{01}}=\theta \left( x_{{0}},y_{{0}},x_{{1}},y_{{1}},\alpha _{rs} \right) \) and \(\epsilon =\mathop {\text {lim}}\limits _{\alpha {mn}\rightarrow \alpha _{rs}}\left( \alpha _{mn}^{{4}}-\alpha _{rs}^{{4}} \right) .\) Therefore for \(p=r\) and \(q=s\), the numerator is \(4F_{0}^{*}\left\{ f_{rs}\left( x_{0},y_{0} \right) +\mu _{1}\left( \alpha _{rs} \right) \left[ \theta _{01}f_{rs}\left( x_{1},y_{1} \right) -\theta _{11}f_{rs}\left( x_{0},y_{0} \right) \right] \right\} \) and the dominator \(-\mu _{1}\left( \alpha _{rs} \right) \left[ f_{rs}\left( x_{1},y_{1} \right) \right] ^{2}\) and thus we deduce that

$$\begin{aligned} a_{rs}\left( \alpha =\alpha _{rs} \right) =\frac{4F_{0}^{*}}{\left[ f_{rs}\left( x_{1},y_{1} \right) \right] ^{2}}\left[ \theta _{11}f_{rs}\left( x_{0},y_{0} \right) -\theta _{01}f_{rs}\left( x_{1},y_{1} \right) -\frac{f_{rs}\left( x_{0},y_{0} \right) }{\mu _{1}\left( \alpha _{rs} \right) }\right] \end{aligned}$$
(A.2)

The above coefficient is certainly bounded. Viewing Eq. (18), for \(N=2\) we also have

$$\begin{aligned}&\tau _{12}\left( \alpha \right) \tau _{21}\left( \alpha \right) -\tau _{11}\left( \alpha \right) \tau _{22}\left( \alpha \right) =\mu _{1}\mu _{2}[\psi ^{2}\left( x_{1},y_{1},x_{2},y_{2},\alpha \right) -\psi \left( x_{1},y_{1},x_{1},y_{1},\alpha \right) \psi \left( x_{2},y_{2},x_{2},y_{2},\alpha \right) ] \nonumber \\&\qquad +\,\mu _{1}\psi \left( x_{1},y_{1},x_{1},y_{1},\alpha \right) +\mu _{2}\psi \left( x_{2},y_{2},x_{2},y_{2},\alpha \right) -1 \nonumber \\&\rho _{2}\left( \alpha \right) \tau _{21}\left( \alpha \right) -\rho _{1}\left( \alpha \right) \tau _{22}\left( \alpha \right) =-\mu _{1}\psi \left( x_{0},y_{0},x_{1},y_{1},\alpha \right) +\mu _{1}\mu _{2} \nonumber \\&\qquad \times [\psi \left( x_{0},y_{0},x_{1},y_{1},\alpha \right) \psi \left( x_{2},y_{2},x_{2},y_{2},\alpha \right) -\psi \left( x_{1},y_{1},x_{2},y_{2},\alpha \right) \psi \left( x_{0},y_{0},x_{2},y_{2},\alpha \right) ] \nonumber \\&\rho _{1}\left( \alpha \right) \tau _{12}\left( \alpha \right) -\rho _{2}\left( \alpha \right) \tau _{11}\left( \alpha \right) =-\mu _{2}\psi \left( x_{0},y_{0},x_{2},y_{2},\alpha \right) \nonumber \\&\qquad +\,\mu _{1}\mu _{2}[\psi \left( x_{0},y_{0},x_{2},y_{2},\alpha \right) \psi \left( x_{1},y_{1},x_{1},y_{1},\alpha \right) -\psi \left( x_{1},y_{1},x_{2},y_{2},\alpha \right) \psi \left( x_{0},y_{0},x_{1},y_{1},\alpha \right) ] \end{aligned}$$
(A.3)

By splitting the singular and regular terms of the predefined function \(\psi \left( x,y,z,v,\alpha _{rs} \right) \) as \(\psi \left( x,y,z,v,\alpha _{rs} \right) =\theta \left( x,y,z,v,\alpha _{rs} \right) +\frac{f_{rs}\left( x,y \right) f_{rs}\left( z,v \right) }{\epsilon },\) the above equalities at \(\alpha =\alpha _{rs}\) are rewritten as follows

$$\begin{aligned}&\tau _{12}( \alpha _{rs} )\tau _{21}( \alpha _{rs} )-\tau _{11}( \alpha _{rs} )\tau _{22}( \alpha _{rs} )=\mu _{1}\theta _{11}+\mu _{2}\theta _{22}+\mu _{1}\mu _{2}[( \theta _{12} )^{2}-\theta _{11}\theta _{22}]-1 \nonumber \\&\quad +\,\{\mu _{1}\mu _{2}\{2\theta _{12}f_{rs}( x_{1},y_{1} )f_{rs}( x_{2},y_{2} )-\theta _{11}{[f_{rs}( x_{2},y_{2} )]}^{2}-\theta _{22}[ f_{rs}( x_{1},y_{1} ) ]^{2}\} \nonumber \\&\quad +\,\mu _{1}[ f_{rs}( x_{1},y_{1} ) ]^{2}+\mu _{2}{[f_{rs}( x_{2},y_{2} )]}^{2}\}/\epsilon \nonumber \\&\rho _{2}( \alpha _{rs} )\tau _{21}( \alpha _{rs} )-\rho _{1}( \alpha _{rs} )\tau _{22}( \alpha _{rs} )=-\mu _{1}\theta _{01}+\mu _{1}\mu _{2}(\theta _{01}\theta _{22}-\theta _{12}\theta _{02}) \nonumber \\&\quad +\,\{\mu _{1}\mu _{2}\{\theta _{01}{[f_{rs}( x_{2},y_{2} )]}^{2}+\theta _{22}f_{rs}( x_{0},y_{0} )f_{rs}( x_{1},y_{1} ) \nonumber \\&\quad -\,\theta _{12}f_{rs}( x_{0},y_{0} )f_{rs}( x_{2},y_{2} )-\theta _{02}f_{rs}( x_{1},y_{1} )f_{rs}( x_{2},y_{2} )\}-\mu _{1}f_{rs}( x_{0},y_{0} )f_{rs}( x_{1},y_{1} )\} / \epsilon \nonumber \\&\rho _{1}( \alpha _{rs} )\tau _{12}( \alpha _{rs} )-\rho _{2}( \alpha _{rs} )\tau _{11}( \alpha _{rs} )=-\mu _{2}\theta _{02}+\mu _{1}\mu _{2}(\theta _{02}\theta _{11}-\theta _{12} \theta _{01}) \nonumber \\&\quad +\,\{\mu _{1}\mu _{2}\{\theta _{02}[ f_{rs}( x_{1},y_{1} ) ]^{2}+\theta _{11}f_{rs}( x_{0},y_{0} )f_{rs}( x_{2},y_{2} )-\theta _{12}f_{rs}( x_{0},y_{0} )f_{rs}( x_{1},y_{1} )\nonumber \\&\quad -\,\theta _{01}f_{rs}( x_{1},y_{1} )f_{rs}( x_{2},y_{2} )\}-\mu _{2}f_{rs}( x_{0},y_{0} )f_{rs}( x_{2},y_{2} )\}/\epsilon \end{aligned}$$
(A.4)

where

$$\begin{aligned} \theta _{22}=\theta \left( x_{2},y_{2},x_{2},y_{2},\alpha _{rs} \right) ,\theta _{12}=\theta \left( x_{1},y_{1},x_{2},y_{2},\alpha _{rs} \right) ,\theta _{02}=\theta \left( x_{0},y_{0},x_{2},y_{2},\alpha _{rs} \right) \end{aligned}$$
(A.5)

Substituting the above relations into the second equation of (19) results in

$$\begin{aligned}&a_{pq}(\alpha _{rs})=\{4F_{0}^{*}\mu _{1}[\theta _{11}f_{pq}( x_{0},y_{0} )-\theta _{01}f_{pq}( x_{1},y_{1} )]+\mu _{2}[\theta _{22}f_{pq}( x_{0},y_{0} )-\theta _{02}f_{pq}( x_{2},y_{2} )] \nonumber \\&\quad +\,\mu _{1}\mu _{2}\{( \theta _{01}\theta _{22}-\theta _{12}\theta _{02} )f_{pq}( x_{1},y_{1} )+( \theta _{02}\theta _{11}-\theta _{12}\theta _{01} )f_{pq}( x_{2},y_{2} ) \nonumber \\&\quad +\,[ ( \theta _{12} )^{2}-\theta _{11}\theta _{22} ]f_{pq}( x_{0},y_{0} )-f_{pq}( x_{0},y_{0} ) \nonumber \\&\quad +\,\{\mu _{1}\mu _{2}\{\theta _{12}\{2f_{rs}( x_{1},y_{1} )f_{rs}( x_{2},y_{2} )f_{pq}( x_{0},y_{0} ) \nonumber \\&\quad -\,f_{rs}( x_{0},y_{0} )[ f_{rs}( x_{2},y_{2} )f_{pq}( x_{1},y_{1} )+f_{rs}( x_{1},y_{1} )f_{pq}( x_{2},y_{2} ) ]\} \nonumber \\&\quad +\,\theta _{11}f_{rs}( x_{2},y_{2} )[f_{rs}( x_{0},y_{0} )f_{pq}( x_{2},y_{2} )-f_{rs}( x_{2},y_{2} )f_{pq}( x_{0},y_{0} )] \nonumber \\&\quad +\,\theta _{22}f_{rs}( x_{1},y_{1} )[f_{rs}( x_{0},y_{0} )f_{pq}( x_{1},y_{1} )-f_{rs}( x_{1},y_{1} )f_{pq}( x_{0},y_{0} )] \nonumber \\&\quad +\,[\theta _{01}f_{rs}( x_{2},y_{2} )-\theta _{02}f_{rs}( x_{1},y_{1} )][f_{rs}( x_{2},y_{2} )f_{pq}( x_{1},y_{1} )-f_{rs}( x_{1},y_{1} )f_{pq}( x_{2},y_{2} )]\} \nonumber \\&\quad +\,\mu _{1}f_{rs}( x_{1},y_{1} )[f_{pq}( x_{0},y_{0} )f_{rs}( x_{1},y_{1} )-f_{pq}( x_{1},y_{1} )f_{rs}( x_{0},y_{0} )] \nonumber \\&\quad +\,\mu _{2}f_{rs}( x_{2},y_{2} )[f_{pq}( x_{0},y_{0} )f_{rs}( x_{2},y_{2} )-f_{rs}( x_{0},y_{0} )f_{pq}( x_{2},y_{2} )]\}/\epsilon \}/ \nonumber \\&\quad ({\alpha }_{pq}^{4}-\alpha ^{4})\{\mu _{1}\theta _{11}+\mu _{2}\theta _{22}+\mu _{1}\mu _{2}[( \theta _{12} )^{2}-\theta _{11}\theta _{22}]-1 \nonumber \\&\quad +\,\{\mu _{1}\mu _{2}\{2\theta _{12}f_{rs}( x_{1},y_{1} )f_{rs}( x_{2},y_{2} )-\theta _{11}{[f_{rs}( x_{2},y_{2} )]}^{2}-\theta _{22}[ f_{rs}( x_{1},y_{1} ) ]^{2}\} \nonumber \\&\quad +\,\mu _{1}[ f_{rs}( x_{1},y_{1} ) ]^{2}+\mu _{2}{[f_{rs}( x_{2},y_{2} )]}^{2}\}/\epsilon \} ,\, for\, N=2 \end{aligned}$$
(A.6)

And finally, for \(m\rightarrow r\) and \(n\rightarrow s\) we conclude that

$$\begin{aligned} a_{rs}(\alpha _{rs})= & {} 4F_{0}^{*}\{\mu _{1}[\theta _{11}f_{rs}( x_{0},y_{0} )-\theta _{01}f_{rs}( x_{1},y_{1} )]+\mu _{2}[\theta _{22}f_{rs}( x_{0},y_{0} )-\theta _{02}f_{rs}( x_{2},y_{2} )] \nonumber \\&+\,\mu _{1}\mu _{2}\{[( \theta _{12} )^{2}-\theta _{11}\theta _{22}]f_{rs}( x_{0},y_{0} )+( \theta _{01}\theta _{22}-\theta _{12}\theta _{02} )f_{rs}( x_{1},y_{1} ) \nonumber \\&+\,( \theta _{02}\theta _{11}-\theta _{12}\theta _{01} )f_{rs}( x_{2},y_{2} )\}-f_{rs}( x_{0},y_{0} )\}/\{\mu _{1}[ f_{rs}( x_{1},y_{1} ) ]^{2}+\mu _{2}[ f_{rs}( x_{2},y_{2} ) ]^{2} \nonumber \\&+\,\mu _{1}\mu _{2}\{2\theta _{12}f_{rs}( x_{1},y_{1} )f_{rs}( x_{2},y_{2} )-\theta _{11}[ f_{rs}( x_{2},y_{2} ) ]^{2}-\theta _{22}[ f_{rs}( x_{1},y_{1} ) ]^{2}\}\},\, for\, N=2\nonumber \\ \end{aligned}$$
(A.7)

Again, it can be seen that the above coefficient is bounded.

Appendix B

The entries of the Jacobian matrix \({\varvec{J}}_{{4}N{\times 4}N}\)

$$\begin{aligned} J_{p,j}= & {} \frac{\partial }{\partial k_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) {\varvec{B}}\left( \alpha _{rs} \right) {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] , \quad r=1,\ldots , N_{1}, s=1,\ldots , N_{2}, p=1,\ldots , N_\mathrm{f} \nonumber \\ J_{iN_\mathrm{f}+p,j}= & {} \frac{\partial }{\partial k_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{B}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(N+i)N_\mathrm{f}+p,j}= & {} \frac{\partial }{\partial k_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{C}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,j}= & {} \frac{\partial }{\partial k_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{D}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{p,N+j}= & {} \frac{\partial }{\partial M_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) {\varvec{B}}\left( \alpha _{rs} \right) {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{iN_\mathrm{f}+p,N+j}= & {} \frac{\partial }{\partial M_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{B}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(N+i)N_\mathrm{f}+p,N+j}= & {} \frac{\partial }{\partial M_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{C}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,N+j}= & {} \frac{\partial }{\partial M_{j}^{*}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{D}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{p,2N+j}= & {} \frac{\partial }{\partial x_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) {\varvec{B}}\left( \alpha _{rs} \right) {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{iN_\mathrm{f}+p,2N+j}= & {} \frac{\partial }{\partial x_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{B}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(N+i)N_\mathrm{f}+p,2N+j}= & {} \frac{\partial }{\partial x_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{C}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,2N+j}= & {} \frac{\partial }{\partial x_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{D}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{p,3N+j}= & {} \frac{\partial }{\partial y_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) {\varvec{B}}\left( \alpha _{rs} \right) {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{iN_\mathrm{f}+p,3N+j}= & {} \frac{\partial }{\partial y_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{B}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(N+i)N_\mathrm{f}+p,3N+j}= & {} \frac{\partial }{\partial y_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{C}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,3N+j}= & {} \frac{\partial }{\partial y_{j}}\left[ \vec {e}^{T}{\varvec{A}}^{-1}\left( \alpha _{rs} \right) \left\{ {\varvec{D}}_{j}\left( \alpha _{rs} \right) \right\} {\varvec{A}}^{-2}\left( \alpha _{rs} \right) \vec {e} \right] \end{aligned}$$
(B.1)

Appendix C

The simplified entries of the Jacobian matrix \({\varvec{J}}_{{4}N\times 4N}\)

$$\begin{aligned} J_{p,j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} ) \left\{ -\frac{8{(\alpha _{rs})}^{4} k_{j}^{*}}{k_{j}^{*}-{(\alpha _{rs})}^{4}M_{j}^{*}} {\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1} ( \alpha _{rs} )\right. \nonumber \\&+\,4( \alpha _{rs} )^{8}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha ){\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[ {\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} ) ]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{p,N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{4( k_{j}^{*} )^{2}( k_{j}^{*}+( \alpha _{rs} )^{4}M_{j}^{*} )}{{(M_{j}^{*})}^{2}(k_{j}^{*}-( \alpha _{rs} )^{4}M_{j}^{*})}{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \right. \nonumber \\&-\,4( \alpha _{rs} )^{4}( k_{j}^{*} /M_{j}^{*} )^{2}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{p,2N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{4\pi }{( \alpha _{rs} )^{4}(k_{j}^{*}-( \alpha _{rs} )^{4}M_{j}^{*})}{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )\right. \nonumber \\&-\,4\pi \{{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{p,3N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{4\pi }{( \alpha _{rs} )^{4}(k_{j}^{*}-( \alpha _{rs} )^{4}M_{j}^{*})}{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )\right. \nonumber \\&-\,4\pi \{{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{iN_\mathrm{f}+p,j}= & {} \vec {e}^{T}\left\{ -\frac{2\delta _{ij}}{(k_{j}^{*}-( \alpha _{rs} )^{4}M_{j}^{*}}{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-2}( \alpha _{rs} ) \right. \nonumber \\&+\,4( \alpha _{rs} )^{8}{\varvec{A}}^{-1}( \alpha _{rs} )\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}_{i}( \alpha _{rs} )[ {\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-2}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} ) ]\}{\varvec{A}}^{-1}( \alpha _{rs} ) \right\} \vec {e} \nonumber \\ J_{iN_\mathrm{f}+p,N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{2k_{j}^{*}\delta _{ij}}{{M_{j}^{*}(k}_{j}^{*}-\alpha _{rs}^{4}M_{j}^{*})}{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \right. \nonumber \\&-\,4( \alpha _{rs} )^{4}( k_{j}^{*} /M_{j}^{*} )^{2}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs})]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{iN_\mathrm{f}+p,2N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \pi \frac{M_{j}^{*}\delta _{ij}}{\alpha _{rs}^{4}k_{j}^{*}(k_{j}^{*}-\alpha _{rs}^{4}M_{j}^{*})}{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \right. \nonumber \\&-\,4\pi \{{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{iN_\mathrm{f}+p,3N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\pi \left\{ \frac{M_{j}^{*}\delta _{ij}}{\alpha _{rs}^{4}k_{j}^{*}(k_{j}^{*}-\alpha _{rs}^{4}M_{j}^{*})}{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \right. \nonumber \\&-\,4\pi \{{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{B}}_{i}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(N+i)N_\mathrm{f}+p,j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{{-\alpha _{rs}}^{4}M_{j}^{*}\delta _{ij}}{k_{j}^{*}(k_{j}^{*}-\alpha _{rs}^{4}M_{j}^{*})}{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )\right. \nonumber \\&+\,4( \alpha _{rs} )^{8}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha ){\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[ {\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} ) ]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(N+i)N_\mathrm{f}+p,N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{k_{j}^{*}\delta _{ij}}{M_{j}^{*}(k_{j}^{*}-\alpha _{rs}^{4}M_{j}^{*})}{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )\right. \nonumber \\&-\,4( \alpha _{rs} )^{4}( k_{j}^{*} / M_{j}^{*} )^{2}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(N+i)N_\mathrm{f}+p,2N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\{\pi \delta _{ij}\mu _{j}(\alpha _{rs}){\varvec{P}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&-\,4\pi \{{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&+\,{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} )]\}\}{\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(N+i)N_\mathrm{f}+p,3N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\{\pi \delta _{ij}\mu _{j}(\alpha _{rs}){\varvec{Q}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&-\,4\pi \{{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&+\,{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} )]\}\}{\varvec{A}}^{-1}( \alpha _{rs} )\vec {e}\nonumber \\ J_{(2N+i)N_\mathrm{f}+p,j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{{-\alpha }^{4}M_{j}^{*}\delta _{ij}}{k_{j}^{*}(k_{j}^{*}-\alpha ^{4}M_{j}^{*})}{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )\right. \nonumber \\&+\,4( \alpha _{rs} )^{8}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha ){\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[ {\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} ) ]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\left\{ \frac{k_{j}^{*}\delta _{ij}}{M_{j}^{*}(k_{j}^{*}-\alpha ^{4}M_{j}^{*})}{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )\right. \nonumber \\&-\,4( \alpha _{rs} )^{4}( k_{j}^{*} / M_{j}^{*} )^{2}\{{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&\left. +\,{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{B}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{B}}_{j}( \alpha _{rs} )]\} \right\} {\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,2N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\{\pi \delta _{ij}\mu _{j}(\alpha _{rs}){\varvec{S}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&-\,4\pi \{{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&+\,{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{C}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{C}}_{j}( \alpha _{rs} )]\}\}{\varvec{A}}^{-1}( \alpha _{rs} )\vec {e} \nonumber \\ J_{(2N+i)N_\mathrm{f}+p,3N+j}= & {} \vec {e}^{T}{\varvec{A}}^{-1}( \alpha _{rs} )\{\pi \delta _{ij}\mu _{j}(\alpha _{rs}){\varvec{R}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&-\,4\pi \{{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} ) \nonumber \\&+\,{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )[{\varvec{D}}_{j}( \alpha _{rs} ){\varvec{A}}^{-1}( \alpha _{rs} )+{\varvec{A}}^{-1}( \alpha _{rs} ){\varvec{D}}_{j}( \alpha _{rs} )]\} \}{\varvec{A}}^{-1}( \alpha _{rs} )\vec {e}\nonumber \\ \end{aligned}$$
(C.1)

Appendix D: Flowchart specifying the methodology of computing the optimal parameters of the absorbers

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ari, M., Faal, R.T. Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers. Arch Appl Mech 90, 235–274 (2020). https://doi.org/10.1007/s00419-019-01607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01607-z

Keywords

Navigation