Skip to main content
Log in

Stability analysis of the mixed variable method and its application in wave reflection and transmission in multilayered anisotropic structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the reflection and transmission (R/T) problem of elastic waves in multilayered anisotropic structures. Stability analysis of the mixed variable method (MVM) for computing the R/T coefficients of elastic waves in multilayered anisotropic structures is presented. For this purpose, a detailed comparison of the MVM with the other two widely used methods, namely the transfer matrix method (TMM) and the stiffness matrix method (SMM), is made. Although the TMM, the SMM and the MVM are mathematically equivalent, they are quite different in numerical stability. The theoretical analysis shows that the MVM is unconditionally stable for arbitrary wavenumber–thickness products, whereas the TMM and the SMM may become unstable for large or small wavenumber–thickness products, respectively. This conclusion is numerically verified by various examples. Finally, the R/T coefficients of elastic waves in generally anisotropic multilayered structures bounded by two semi-infinite spaces are calculated using the MVM for a quasi-longitudinal or quasi-transverse wave incidence, and the effects of incident angles and wavenumber–thickness products on the R/T coefficients are discussed in detail through an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ewing, W.M.: Elastic Waves in Layered Media. McGraw-Hill, New York (1957)

    MATH  Google Scholar 

  2. Brekhovskikh, L.: Waves in Layered Media. Academic Press, New York (1980)

    MATH  Google Scholar 

  3. Aid, K., Richards, P.G.: Quantitative Seismology: Theory and Methods, 2nd edn. University Science Books, California (1980)

    Google Scholar 

  4. Pujol, J.: Elastic Wave Propagation and Generation in Seismology. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  5. Hussain, W., Ogden, R.W.: The effect of pre-strain on the reflection and transmission of plane waves at an elastic interface. Int. J. Eng. Sci. 39, 929–950 (2001)

    Google Scholar 

  6. Vinh, P.C., Tuan, T.T., Capistran, M.A.: Explicit formulas for the reflection and transmission coefficients of one-component waves through a stack of an arbitrary number of layers. Wave Motion 54, 134–144 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Vinh, P.C., Tuan, T.T., Tung, D.X., Kieu, N.T.: Reflection and transmission of SH waves at a very rough interface and its band gaps. J. Sound Vib. 411, 422–434 (2017)

    Google Scholar 

  8. Chakraborty, N., Singh, M.C.: Reflection and refraction of a plane thermoelastic wave at a solid–solid interface under perfect boundary condition, in presence of normal initial stress. Appl. Math. Model. 35, 5286–5301 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Ryue, J., Thompson, D.J., White, P.R., Thompson, D.R.: Wave reflection and transmission due to defects in infinite structural waveguides at high frequencies. J. Sound Vib. 330, 1737–1753 (2011)

    Google Scholar 

  10. Graebner, M.: Plane-wave reflection and transmission coefficients for a transversely isotropic solid. Geophysics 57, 1512–1519 (1992)

    Google Scholar 

  11. Chapman, C.H.: Reflection/transmission coefficient reciprocities in anisotropic media. Geophys. J. Int. 116, 498–501 (1994)

    Google Scholar 

  12. Alshits, V.I., Lothe, J.: Comments on the relation between surface wave theory and the theory of reflection. Wave Motion 3, 297–310 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Cerveny, V.: Seismic Ray Theory. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  14. Henneke, E.G.: Reflection–refraction of a stress wave at a plane boundary between anisotropic media. J. Acoust. Soc. Am. 51, 210–217 (1972)

    MATH  Google Scholar 

  15. Rokhlin, S.I., Bolland, T.K., Adler, L.: Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J. Acoust. Soc. Am. 79, 906–918 (1986)

    Google Scholar 

  16. Rokhlin, S.I., Bolland, K., Adler, L.: Splitting of domain of angles for incident wave vectors in elastic anisotropic media. J. Appl. Phys. 59, 3672–3677 (1986)

    Google Scholar 

  17. Mandal, B.: Reflection and transmission properties of elastic waves on a plane interface for general anisotropic media. J. Acoust. Soc. Am. 90, 1106–1118 (1991)

    Google Scholar 

  18. Lanceleur, P., Ribeiro, H., De Belleval, J.F.: The use of inhomogeneous waves in the reflection–transmission problem at a plane interface between two anisotropic media. J. Acoust. Soc. Am. 93, 1882–1892 (1993)

    Google Scholar 

  19. Chattopadhyay, A.: Wave reflection and refraction in triclinic crystalline media. Arch. Appl. Mech. 73, 568–579 (2004)

    MATH  Google Scholar 

  20. Chattopadhyay, A.: Wave reflection in triclinic crystalline medium. Arch. Appl. Mech. 76, 65–74 (2006)

    MATH  Google Scholar 

  21. Chattopadhyay, A., Kumari, P., Sharma, V.K.: Reflection and refraction at the interface between distinct generally anisotropic half spaces for three-dimensional plane quasi-P waves. J. Vib. Control 21, 493–508 (2015)

    Google Scholar 

  22. Chatterjee, M., Dhua, S., Sahu, S.A., Chattopadhyay, A.: Reflection in a highly anisotropic medium for three-dimensional plane waves under initial stresses. Int. J. Eng. Sci. 85, 136–149 (2014)

    Google Scholar 

  23. Li, Y.Q., Wei, P.J.: Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces. Int. J. Solids Struct. 56, 194–208 (2015)

    Google Scholar 

  24. Li, Y.Q., Wei, P.J.: Reflection and transmission through a microstructured slab sandwiched by two half-spaces. Eur. J. Mech. A Solids 57, 1–17 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, P., Wei, P.J., Li, Y.Q.: In-plane wave propagation through a microstretch slab sandwiched by two half-spaces. Eur. J. Mech. A Solids 63, 136–148 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Jiao, F.Y., Wei, P.J., Zhou, Y.H., Zhou, X.L.: Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur. J. Mech. A Solids 75, 70–81 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Kumar, R., Gupta, V.: Reflection and transmission of plane waves at the interface of an elastic half-space and a fractional order thermoelastic half-space. Arch. Appl. Mech. 83, 1109–1128 (2013)

    Google Scholar 

  28. Tomar, S.K., Garg, M.: Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces. Int. J. Eng. Sci. 43, 139–169 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Nguyen, V.H., Abdoulatuf, A., Desceliers, C., Naili, S.: A probabilistic study of reflection and transmission coefficients of random anisotropic elastic plates. Wave Motion 64, 103–118 (2016)

    MathSciNet  Google Scholar 

  30. Song, G.R., Liu, M.K., Lyu, Y., Lee, Y., Wu, B., He, C.F.: Application of Legendre orthogonal polynomial method in calculating reflection and transmission coefficients of multilayer plates. Wave Motion 84, 32–45 (2019)

    MathSciNet  Google Scholar 

  31. Ding, J.C., Wu, B., He, C.F.: Reflection and transmission coefficients of the SH 0 mode in the adhesive structures with imperfect interface. Ultrasonics 70, 248–257 (2016)

    Google Scholar 

  32. Wang, Y.Z., Li, F.M., Wang, Y.S.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016)

    Google Scholar 

  33. Wang, Y.Z., Wang, Y.S.: Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78, 1–8 (2018)

    MathSciNet  Google Scholar 

  34. Liang, B., Guo, X.S., Tu, J., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9, 989 (2010)

    Google Scholar 

  35. Liang, B., Zou, X.Y., Yuan, B., Cheng, J.C.: Frequency-dependence of the acoustic rectifying efficiency of an acoustic diode model. Appl. Phys. Lett. 96, 233511 (2010)

    Google Scholar 

  36. Li, Z.N., Yuan, B., Wang, Y.Z., Shui, G.S., Zhang, C.Z., Wang, Y.S.: Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mech. Mater. 133, 85–101 (2019)

    Google Scholar 

  37. Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89–93 (1950)

    MathSciNet  MATH  Google Scholar 

  38. Haskell, N.A.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43, 17–34 (1953)

    Google Scholar 

  39. Potel, C., de Belleval, J.F.: Propagation in an anisotropic periodically multilayered medium. J. Acoust. Soc. Am. 93, 2669–2677 (1993)

    Google Scholar 

  40. Vashishth, A.K., Khurana, P.: Waves in stratified anisotropic poroelastic media: a transfer matrix approach. J. Sound Vib. 277, 239–275 (2004)

    Google Scholar 

  41. Golub, M.V., Fomenko, S.I., Bui, T.Q., Zhang, C., Wang, Y.S.: Transmission and band gaps of elastic SH waves in functionally graded periodic laminates. Int. J. Solids Struct. 49, 344–354 (2012)

    Google Scholar 

  42. Zhu, J., Chen, H.Y., Wu, B., Chen, W.Q., Balogun, O.: Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates. Int. J. Mech. Sci. 146, 81–90 (2018)

    Google Scholar 

  43. Chen, J., Bai, X.L., Yang, K.J., Ju, B.F.: The computations of reflection coefficients of multilayer structure based on the reformulation of Thomson–Haskell method. Ultrasonics 52, 1019–1023 (2012)

    Google Scholar 

  44. Dazel, O., Groby, J.P., Brouard, B., Potel, C.: A stable method to model the acoustic response of multilayered structures. J. Appl. Phys. 113, 083506 (2013)

    Google Scholar 

  45. Feng, S.J., Chen, Z.L., Chen, H.X.: A systematic and efficient method for modeling acoustic response of multilayered media. J. Appl. Phys. 122, 224901 (2017)

    Google Scholar 

  46. Wang, L., Rokhlin, S.I.: Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39, 413–424 (2001)

    Google Scholar 

  47. Rokhlin, S.I., Wang, L.: Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J. Acoust. Soc. Am. 112, 822 (2002)

    Google Scholar 

  48. Ishii, Y., Biwa, S.: Transmission of ultrasonic waves at oblique incidence to composite laminates with spring-type interlayer interfaces. J. Acoust. Soc. Am. 138, 2800–2810 (2015)

    Google Scholar 

  49. Chen, J.Y., Guo, J.H., Pan, E.: Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid. Compos. Struct. 162, 401–410 (2017)

    Google Scholar 

  50. Wang, L., Rokhlin, S.I.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. J. Mech. Phys. Solids 52, 2473–2506 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Zhong, W.X., Zhong, X.X.: Elliptic partial differential equation and optimal control. Numer. Methods Partial Differ. Equ. 8, 149–169 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Zhong, W.X., Williams, F.W., Bennett, P.N.: Extension of the Wittrick–Williams algorithm to mixed variable systems. ASME J. Vib. Acoust. 119, 334–340 (1997)

    Google Scholar 

  53. Gao, Q., Zhong, W.X., Howson, W.P.: A precise method for solving wave propagation problems in layered anisotropic media. Wave Motion 40, 191–207 (2004)

    MATH  Google Scholar 

  54. Gao, Q., Lin, J.H., Zhong, W.X., Howson, W.P., Williams, F.W.: A precise numerical method for Rayleigh waves in a stratified half space. Int. J. Numer. Methods Eng. 67, 771–786 (2006)

    MATH  Google Scholar 

  55. Gao, Q., Zhang, Y.H.: Stable and accurate computation of dispersion relations for layered waveguides, semi-infinite spaces and infinite spaces. ASME J. Vib. Acoust. 141, 031012 (2019)

    Google Scholar 

  56. Tan, E.L.: Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 119, 45–53 (2006)

    Google Scholar 

  57. Liu, H., Pan, E.: Time-harmonic loading over transversely isotropic and layered elastic half-spaces with imperfect interfaces. Soil Dyn. Earthq. Eng. 107, 35–47 (2018)

    Google Scholar 

  58. Pan, E., Liu, H., Zhang, Z.Q.: Vertical and torsional vibrations of a rigid circular disc on a transversely isotropic and layered half-space with imperfect interfaces. Soil Dyn. Earthq. Eng. 113, 442–453 (2018)

    Google Scholar 

  59. Moshtagh, E., Pan, E., Eskandari-Ghadi, M.: Wave propagation in a multilayered magneto-electro-elastic half-space induced by external/internal circular time-harmonic mechanical loading. Int. J. Solids Struct. 128, 243–261 (2017)

    Google Scholar 

  60. Liu, H., Pan, E., Cai, Y.C.: General surface loading over layered transversely isotropic pavements with imperfect interfaces. Adv. Eng. Softw. 115, 268–282 (2018)

    Google Scholar 

  61. Royer, D., Dieulesaint, E.: Elastic Waves in Solids I: Free and Guided Propagation. Springer, New York (2000)

    MATH  Google Scholar 

  62. Zhong, W.X., Howson, W.P., Williams, F.W.: Precise solutions for surface wave propagation in stratified material. ASME J. Vib. Acoust. 123, 198–204 (2001)

    Google Scholar 

  63. Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic elasticity. World Scientific, Singapore (2009)

    MATH  Google Scholar 

  64. Rokhlin, S.I., Huang, W.: Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids. II. Second-order asymptotic boundary conditions. J. Acoust. Soc. Am. 94, 3405–3420 (1993)

    Google Scholar 

  65. Rasolofosaon, P.N.J., Zinszner, B.E.: Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks. Geophysics 67, 230–240 (2002)

    Google Scholar 

  66. Mensch, T., Rasolofosaon, P.: Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen’s parameters \(\varepsilon \), \(\delta \) and \(\gamma \). Geophys. J. Int. 128, 43–64 (1997)

    Google Scholar 

  67. Yang, G.Y., Kabel, J., Van Rietbergen, B., Odgaard, A., Huiskes, R., Cown, S.C.: The anisotropic Hooke’s law for cancellous bone and wood. J. Elast. 53, 125–146 (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Natural Science Foundation of China (Nos. 11572076 and 91748203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gao, Q. Stability analysis of the mixed variable method and its application in wave reflection and transmission in multilayered anisotropic structures. Arch Appl Mech 90, 127–146 (2020). https://doi.org/10.1007/s00419-019-01601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01601-5

Keywords

Navigation