Skip to main content
Log in

The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Utilizing ball-type auto-balancer in rotating systems is a popular method in industry in order to eliminate the rotational vibration. Recently, by using numerical methods, it is shown that a ball-type auto-balancer equipped with both the radial and peripheral springs, ball-spring automatic balancer (AB), is an improved model. In this paper, due to the advantages of analytical methods over the numerical ones, the complete system dynamics, i.e., the stability analysis and the time response, of the rotor equipped with ball-spring AB is analyzed by the multiple scales method as a unified technique. Therefore, with no need for implementing any other stability theories, the stability analysis is a definite advantage of this method due to the less computation cost. Moreover, the time responses show a good agreement with those obtained through the numerical method. Finally, for the first time, the influence of the peripheral springs on the time responses and the stable equilibrium points of the rotor with ball-spring AB is studied in details. The results show that the peripheral springs decrease the vibration amplitude at the transient and leave some residual imbalance at the steady state and accordingly, there is a compromise between the system working performance at the transient and the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chung, J., Ro, D.S.: Dynamic analysis of an automatic dynamic balancer for rotating mechanism. J. Sound Vib. 228(5), 1035–1056 (1999)

    Article  Google Scholar 

  2. Huang, W.Y., Chao, C.P., Kang, J.R., Sung, C.K.: The application of ball-type balancers for radial vibration reduction of high-speed optic disk drives. J. Sound Vib. 250(3), 415–430 (2002)

    Article  Google Scholar 

  3. Kim, W., Chung, J.: Performance of automatic ball balancers on optical disc drives. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 216(11), 1071–1080 (2002)

    Article  Google Scholar 

  4. Chao, P.C.P., Huang, Y.D., Sung, C.K.: Non-planar dynamic modeling for the optical disk drive spindles equipped with an automatic balancer. Mech. Mach. Theory 38(11), 1289–1305 (2003)

    Article  Google Scholar 

  5. Kim, W., Lee, D.J., Chung, J.: Three-dimensional modeling and dynamic analysis of an automatic ball balancer in an optical disk drive. J. Sound Vib. 285(3), 547–569 (2005)

    Article  Google Scholar 

  6. Chao, P.C., Sung, C.K., Wang, C.C.: Dynamic analysis of the optical disk drives equipped with an automatic ball balancer with consideration of torsional motion. J. Appl. Mech. 72(6), 826–842 (2005)

    Article  Google Scholar 

  7. Rajalingham, C., Rakheja, S.: Whirl suppression in hand-held power tool rotors using guided rolling balancers. J. Sound Vib. 217(3), 453–466 (1998)

    Article  Google Scholar 

  8. Thearle, E.L.: Automatic dynamic balancers. Mach. Des. 22, 119–124 (1950)

    Google Scholar 

  9. Alexander, J.D.: An automatic dynamic balancer. Proc. Second Southeast. Conf. 2, 415–426 (1964)

    Google Scholar 

  10. Cade, J.W.: Self-compensating balancing in rotating mechanisms. Des. News 234–239, (1965)

  11. Chung, J., Jang, I.: Dynamic response and stability analysis of an automatic ball balancer for a flexible rotor. J. Sound Vib. 259(1), 31–43 (2003)

    Article  Google Scholar 

  12. Green, K., Champneys, A.R., Lieven, N.J.: Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors. J. Sound Vib. 291(3), 861–881 (2006)

    Article  Google Scholar 

  13. Green, K., Champneys, A.R., Friswell, M.I.: Analysis of the transient response of an automatic dynamic balancer for eccentric rotors. Int. J. Mech. Sci. 48(3), 274–293 (2006)

    Article  Google Scholar 

  14. Lu, C.J.: Stability analysis of a single-ball automatic balancer. J. Vib. Acoust. 128(1), 122–125 (2006)

    Article  Google Scholar 

  15. Lu, C.J., Hung, C.H.: Stability analysis of a three-ball automatic balancer. J. Vib. Acoust. 130(5), 1–7 (2008)

    Article  Google Scholar 

  16. Lu, C.J., Wang, M.C., Huang, S.H.: Analytical study of the stability of a two-ball automatic balancer. Mech. Syst. Signal Process. 23(3), 884–896 (2009)

    Article  Google Scholar 

  17. Ehyaei, J., Moghaddam, M.M.: Dynamic response and stability analysis of an unbalanced flexible rotating shaft equipped with n automatic ball-balancers. J. Sound Vib. 321(3–5), 554–571 (2009)

    Article  Google Scholar 

  18. Chan, T.C., Sung, C.K., Chao, P.C.P.: Non-linear suspension of an automatic ball balancer. Int. J. Non-Linear Mech. 46(2), 415–424 (2011)

    Article  Google Scholar 

  19. Lu, C.J., Wang, M.C.: Stability analysis of a ball-rod-spring automatic balancer. Int. J. Mech. Sci. 53, 846–854 (2011)

    Article  Google Scholar 

  20. Kim, T., Na, S.: New automatic ball balancer design to reduce transient-response in rotor system. Mech. Syst. Signal Process. 37(1), 265–275 (2013)

    Article  Google Scholar 

  21. Rezaee, M., Fathi, R.: A new design for automatic ball balancer to improve its performance. Mech. Mach. Theory. 94, 165–176 (2015)

    Article  Google Scholar 

  22. Rezaee, M., Fathi, R.: Improving the working performance of automatic ball balancer by modifying its mechanism. J. Sound Vib. 358, 375–391 (2015)

    Article  Google Scholar 

  23. Han, Q., Qin, Z., Lu, W., Chu, F.: Dynamic stability analysis of periodic axial loaded cylindrical shell with time-dependent rotating speeds. Nonlinear Dyn. 81, 1649–1664 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mirtalaie, S.H., Hajabasi, M.A.: Nonlinear axial-lateral-torsional free vibrations analysis of Rayleigh rotating shaft. Arch. Appl. Mech. 87(3), 1–30 (2017)

    Google Scholar 

  25. Shahgholi, M., Esmaeilzadeh Khadem, S.: Stability analysis of a nonlinear rotating asymmetrical shaft near the resonances. Nonlinear Dyn. 70, 1311–1325 (2012)

    Article  MathSciNet  Google Scholar 

  26. Iwatsubo, T., Shimbo, K., Kawamura, S.: Nonlinear vibration analysis of a rotor system using component mode synthesis method. Arch. Appl. Mech. 72, 843–855 (2003)

    MATH  Google Scholar 

  27. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Rezaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, M., Ghorbanpour, L. The nonlinear dynamic analysis of the ball-spring automatic balancer by the multiple scales method. Arch Appl Mech 89, 2229–2243 (2019). https://doi.org/10.1007/s00419-019-01573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01573-6

Keywords

Navigation