Advertisement

The effect of longitudinal cracks and interface adhesion on buckling of columns: analytical solution

  • Bojan Čas
  • Sebastjan Bratina
  • Igor Planinc
  • Simon SchnablEmail author
Original
  • 32 Downloads

Abstract

This paper focuses on development of a new mathematical model and its analytical solution for the buckling analysis of elastic columns with preexisted longitudinal cracks and finite adhesion between the cracked sections. Consequently, the analytical solution for the buckling loads is derived for the first time. The critical buckling loads are calculated for two different types of connections between the cracked sections, namely for slipping only and simultaneous slipping and uplifting between them. The parametric study is performed to analyze the effect of the crack length on the critical buckling loads. It is shown that the critical buckling load can be greatly affected by the crack length and type of the connection between the cracked sections. Finally, the presented results obtained can be used as a benchmark solution.

Keywords

Crack Buckling Column Exact Slip Uplift 

Notes

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0260)

References

  1. 1.
    Okamura, H., Liu, H.W., Chu, C.S.: A cracked column under compression. Eng. Fract. Mech. 1, 547–64 (1969)Google Scholar
  2. 2.
    Wang, Q., Chase, J.G.: Buckling analysis of cracked column structures and piezoelectric-based repair and enhancement of axial load capacity. Int. J. Struct. Stab. Dyn. 3(1), 17–33 (2003)Google Scholar
  3. 3.
    Wang, C.Y., Wang, C.M., Aung, T.M.: Buckling of a weakened column. J. Eng. Mech. ASCE 130(11), 1373–6 (2004)Google Scholar
  4. 4.
    Zhou, L., Huang, Y.: Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns. Struct. Eng. Mech. 22(2), 169–84 (2006)Google Scholar
  5. 5.
    Loya, J.A., Vadillo, G., Fernández-Sáez, J.: First-order solutions for the buckling loads of Euler–Bernoulli weakened columns. J. Eng. Mech. ASCE 136(5), 674–9 (2010)Google Scholar
  6. 6.
    Zapata-Medina, D.G., Arboleda-Monsalve, L.G., Aristizabal-Ochoa, J.D.: Static stability formulas of a weakened Timoshenko column: effects of shear deformations. J. Eng. Mech. ASCE 136(12), 1528–36 (2010)Google Scholar
  7. 7.
    Gurram, S.C.B., Deb, A.: Retrofitting a column with an internal hinge: analytical and numerical study. Pract. Period. Struct. Design Constr. ASCE 16(1), 24–33 (2011)Google Scholar
  8. 8.
    Sokól, K.: Linear and nonlinear vibrations of a column with an internal crack. J. Eng. Mech. ASCE 140(5), 04014021 (2014)Google Scholar
  9. 9.
    Ostachowicz, W.M., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound. Vib. 150(2), 191–201 (1991)Google Scholar
  10. 10.
    Krawczuk, M., Ostachowicz, W.M.: Modelling and vibration analysis of a cantilever composite beam with a transverse open crack. J. Sound. Vib. 183(1), 69–89 (1995)zbMATHGoogle Scholar
  11. 11.
    Ranjbaran, A., Ranjbaran, M.: New finite-element formulation for buckling analysis of cracked structures. J. Eng. Mech. ASCE 140(5), 04014014 (2014)Google Scholar
  12. 12.
    Shirazizadeh, M.R., Shahverdi, H.: An extended finite element model for structural analysis of cracked beam-columns with arbitrary cross-section. Int. J. Mech. Sci. 99, 1–9 (2015)Google Scholar
  13. 13.
    Eisenberger, M., Ambarsumian, H.: Buckling of columns with internal slide release. Int. J. Struct. Stab. Dyn. 2(4), 593–8 (2002)zbMATHGoogle Scholar
  14. 14.
    Simitses, G.J., Sallam, S., Yin, W.L.: Effect of delamination of axially loaded homogeneous laminated plates. AIAA J. 138(1), 90–8 (1985)Google Scholar
  15. 15.
    Chen, F., Qiao, P.: Buckling of delaminated bi-layer beam-columns. Int. J. Solids Struct. 48, 2485–95 (2011)Google Scholar
  16. 16.
    Liu, Q., Qiao, P.: Buckling analysis of bilayer beam-columns with an asymmetric delamination. Compos. Struct. 188, 363–73 (2018)Google Scholar
  17. 17.
    Zhang, W., Song, X., Gu, X., Tang, H.: Compressive behavior of longitudinally cracked timber columns retrofitted using FRP sheets. J. Struct. Eng. ASCE 138(1), 90–8 (2012)Google Scholar
  18. 18.
    Cappello, F., Tumino, D.: Numerical analysis of composite plates with multiple delaminations subjected to uniaxial buckling load. Compos. Sci. Technol. 66, 264–72 (2006)Google Scholar
  19. 19.
    Parlapalli, M.R., Shu, D.: Buckling of composite beams with two non-overlapping delaminations: lower and upper bounds. Int. J. Mech. Sci. 49, 793–805 (2006)Google Scholar
  20. 20.
    Østergaard, R.C.: Buckling driven debonding in sandwich columns. Int. J. Solids Struct. 45, 1264–82 (2008)zbMATHGoogle Scholar
  21. 21.
    Kryžanowski, A., Planinc, I., Schnabl, S.: Slip-buckling analysis of longitudinally delaminated composite columns. Eng. Struct. 76, 404–14 (2014)Google Scholar
  22. 22.
    Schnabl, S., Planinc, I.: The effect of longitudinal cracks on buckling loads of columns. Arch. Appl. Mech. (2018).  https://doi.org/10.1007/s00419-018-1426-2. (in press) Google Scholar
  23. 23.
    Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Mech. Phys. 23, 795–804 (1972)zbMATHGoogle Scholar
  24. 24.
    Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng. ASCE 133(6), 886–894 (2007)Google Scholar
  25. 25.
    Schnabl, S., Planinc, I.: The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip. Eng. Struct. 32(10), 3103–11 (2010)Google Scholar
  26. 26.
    Schnabl, S., Planinc, I.: The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip. Int. J. Nonlinear Mech. 46(3), 543–53 (2011)Google Scholar
  27. 27.
    Kryžanowski, A., Schnabl, S., Turk, G., Planinc, I.: Exact slip-buckling analysis of two-layer composite columns. Int. J. Solids Struct. 46(14–15), 2929–2938 (2009)zbMATHGoogle Scholar
  28. 28.
    Schnabl, S., Planinc, I.: Exact buckling loads of two-layer composite Reissner’s columns with interlayer slip and uplift. Int. J. Solids Struct. 50, 30–37 (2013)Google Scholar
  29. 29.
    Schnabl, S., Planinc, I.: Buckling of slender concrete-filled steel tubes with compliant interfaces. Lat. Am. J. Solids Struct. 14(10), 1837–52 (2017)Google Scholar
  30. 30.
    Hjelmstad, K.D.: Fundamentals of Structural Mechanics. Springer, New York (2005)Google Scholar
  31. 31.
    Hartmann, F.: The Mathematical Foundation of Structural Mechanics. Springer, Berlin (1985)zbMATHGoogle Scholar
  32. 32.
    Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)zbMATHGoogle Scholar
  33. 33.
    Wolfram, S.: Mathematica. Addison-Wesley Publishing Company, Boston (2017)Google Scholar
  34. 34.
    Bratina, S., Saje, M., Planinc, I.: On materially and geometrically non-linear analysis of reinforced concrete planar frames. Int. J. Solids Struct. 41, 7181–7207 (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Civil and Geodetic EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations