Skip to main content

Advertisement

Log in

FEM analysis of a multiferroic nanocomposite: comparison of experimental data and numerical simulation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this contribution, we analyze the properties of two-phase magneto-electric (ME) composites. Such ME composite materials have raised scientific attention in the last decades due to many possible applications in a wide range of technical devices. Since the effective magneto-electric properties significantly depend on the microscopic morphology, we investigate in more detail the changes in the in-plane polarization due to an applied magnetic field. It was shown in previous works that it is possible to grow vertically aligned nanopillars of magnetostrictive cobalt ferrite in a piezoelectric barium titanate matrix by pulsed laser deposition. Based on x-ray linear dichroism, the displacements of titanate ions in the matrix material can be measured due to an applied magnetic field near the boundary of the interface between the matrix and the nanopillars. Here, we focus on (1–3) fiber-induced composites, based on previous experiments, where cobalt ferrite nanopillars are embedded in a barium titanate matrix. In the numerical simulations, we adjusted the boundary value problem to match the experimental setup and compare the results with previously made assumptions of the in-plane polarizations. A further focus is taken on the deformation behavior of the nanopillar over its whole height. Such considerations validate the assumption of the distortion of the nanopillars under an external magnetic field. Furthermore, we analyze the resulting magneto-electric coupling coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961)

    Google Scholar 

  2. Berlincourt, D., Jaffe, H.: Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111, 143–148 (1958). https://doi.org/10.1103/PhysRev.111.143

    Article  Google Scholar 

  3. Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). ISSN 1476-1122

    Article  Google Scholar 

  4. Bichurin, M.I., Petrov, V.M., Srinivasan, G.: Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68, 054402 (2003)

    Article  Google Scholar 

  5. Bichurin, M.I., Petrov, V.M., Averkin, S.V., Liverts, E.: Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J. Appl. Phys. 107(5), 053904 (2010)

    Article  Google Scholar 

  6. Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)

    Article  Google Scholar 

  7. Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007). ISSN 1476-1122

    Article  Google Scholar 

  8. Crottaz, O., Rivera, J.-P., Revaz, B., Schmid, H.: Magnetoelectric effect of \(\text{ Mn }_3\text{ B }_7\text{ O }_{13}\text{ I }\) boracite. Ferroelectrics 204, 125–133 (1997)

    Article  Google Scholar 

  9. Dent, A.C., Bowen, C.R., Stevens, R., Cain, M.G., Stewart, M.: Effective elastic properties for unpoled barium titanate. J. Eur. Ceram. Soc. 27, 3739–3743 (2007)

    Article  Google Scholar 

  10. Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)

    Article  Google Scholar 

  11. Harshé, G., Dougherty, J.P., Newnham, R.E.: Theoretical modeling of multilayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4, 145–159 (1993)

    Google Scholar 

  12. Harshé, G., Dougherty, J.P., Newnham, R.E.: Theoretical modeling of 3–0/0–3 magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4, 161–171 (1993)

    Google Scholar 

  13. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  14. Huang, J.H., Kuo, W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81, 1378–1386 (1997)

    Article  Google Scholar 

  15. Jayachandran, K.P., Guedes, J.M., Rodrigues, H.C.: A generic homogenization model for magnetoelectric multiferroics. J. Intell. Mater. Syst. Struct. 25, 1243–1255 (2014)

    Article  Google Scholar 

  16. Jin, K., Aboudi, J.: Macroscopic behavior prediction of multiferroic composites. Int. J. Eng. Sci. 94, 226–241 (2015)

    Article  MATH  Google Scholar 

  17. Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)

    Article  Google Scholar 

  18. Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, J.S., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Z., Chan, S.-K., Grimsditch, M.H., Zouboulis, E.S.: The elastic and electromechanical properties of tetragonal \(\text{ BaTiO }_3\) single crystals. J. Appl. Phys. 70, 7327–7332 (1991)

    Article  Google Scholar 

  21. Li, Z., Fisher, S., Liu, J.Z., Nevitt, M.V.: Single-crystal elastic constants of Co-Al and CoFe spinels. J. Mater. Sci. 26, 2621–2624 (1991)

    Article  Google Scholar 

  22. Liu, G., Nan, C.W., Xu, Z., Chen, H.: Coupling interaction in multiferroic \(\text{ BaTiO }_3\)\(\text{ CoFe }_2\text{ o }_4\) nanostructures. J. Phys. D Appl. Phys. 38, 2321–2326 (2005)

    Article  Google Scholar 

  23. Martin, L.W., Chu, Y.-H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 68(46), 89–133 (2010). ISSN 0927-796X

    Article  Google Scholar 

  24. Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86, 1225–1276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nan, C.-W., Liu, G., Lin, Y., Chen, H.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94(19), 197203 (2005)

    Article  Google Scholar 

  26. Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007). ISSN 1476-1122

    Article  Google Scholar 

  27. Rivera, J.-P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite. Ferroelectrics 161, 165–180 (1994)

    Article  Google Scholar 

  28. Rivera, J.-P., Schmid, H.: On the birefringence of magnetoelectric \(\text{ BiFeO }_3\). Ferroelectrics 204, 23–33 (1997)

    Article  Google Scholar 

  29. Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  30. Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4/\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields. Nat. Commun. 4, 1–8 (2013)

    Article  Google Scholar 

  31. Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4/\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields: supplementary information. Nat. Commun. 4, (2013)

  32. Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73, 533–552 (2004)

    Article  MATH  Google Scholar 

  33. Schröder, J., Labusch, M., Keip, M .A.: Algorithmic two-scale transition for magneto-electro-mechanically coupled problems \(\text{ FE }^2\)-scheme: localization and homogenization. Cmiamae 302, 253–280 (2016)

    Google Scholar 

  34. Shi, Y., Gao, Y.: A nonlinear magnetoelectric model for magnetoelectric layered composite with coupling stress. J. Magn. Magn. Mater. 360, 131–136 (2014)

    Article  Google Scholar 

  35. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  36. Srinivas, S., Li, J.Y., Zhou, Y.C., Soh, A.K.: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99(4), 043905 (2006)

    Article  Google Scholar 

  37. van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  38. Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)

    Article  Google Scholar 

  39. Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nat. Asia Pac. Asia Mater. 2, 61–68 (2010)

    Google Scholar 

  40. Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., Ramesh, R.: Multiferroic \(\text{ BaTiO }_3\)\(\text{ CoFe }_2\text{ o }_4\) nanostructures. Science 303(5658), 661–663 (2004). https://doi.org/10.1126/science.1094207. ISSN 0036-8075

    Article  Google Scholar 

  41. Zheng, Y.X., Cao, Q.Q., Zhang, C.L., Xuan, H.C., Wang, L.Y., Wang, D.H., Du, Y.W.: Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline \(\text{ CoFe }_2\text{ o }_4\). J. Appl. Phys. 110(4), 043908 (2011). https://doi.org/10.1063/1.3624661

    Article  Google Scholar 

  42. Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the “Deutsche Forschungsgemeinschaft” (DFG), research group “Ferroische Funktionsmaterialien - Mehrskalige Modellierung und experimentelle Charakterisierung”, Project 1 (SCHR 570/12-2) and Project 2 (WE 2623/13-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Labusch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The equations for the stress field \({\varvec{\sigma }}\), dielectric displacement \({{\varvec{D}}}\) and magnetic induction \({{\varvec{B}}}\) for piezoelectricity and piezomagnetism in direct and index notation

$$\begin{aligned} {\varvec{\sigma }}= & {} \mathbb {C} : {\varvec{\varepsilon }}- {{\varvec{e}}}^T \cdot {{\varvec{E}}}- {{\varvec{q}}}^T \cdot {{\varvec{H}}}\; , \quad \sigma _{ij} = \mathbb {C}_{ijkl} \varepsilon _{kl} - e_{kij} E_{k} - q_{kij} H_{k} \; , \end{aligned}$$
(14)
$$\begin{aligned} {{\varvec{D}}}= & {} {{\varvec{e}}}: {\varvec{\varepsilon }}+ {\varvec{\epsilon }}\cdot {{\varvec{E}}}+ {\varvec{\alpha }}\cdot {{\varvec{H}}}\;, \quad D_{i} = e_{ijk} \varepsilon _{jk} + \epsilon _{ik} E_k + \alpha _{ik} H_k \;, \end{aligned}$$
(15)

and

$$\begin{aligned} {{\varvec{B}}}= {{\varvec{q}}}: {\varvec{\varepsilon }}+ {\varvec{\alpha }}\cdot {{\varvec{E}}}+ {\varvec{\mu }}\cdot {{\varvec{H}}}\;, \quad B_{i} = q_{ijk} \varepsilon _{jk} + \alpha _{ik} E_k + \mu _{ik} H_k \;. \end{aligned}$$
(16)

They can be reformulated to

$$\begin{aligned} {\varvec{\varepsilon }}= \mathbb {C}^{-1} {\varvec{\sigma }}+ \underbrace{\mathbb {C}^{-1} : {{\varvec{e}}}^{T}}_{{{\varvec{d}}}_e} \cdot {{\varvec{E}}}+ \underbrace{\mathbb {C}^{-1} : {{\varvec{q}}}^{T}}_{{{\varvec{d}}}_q} \cdot {{\varvec{H}}}\,. \end{aligned}$$
(17)

With (17), Eqs. (15) and (16) can be reformulated to

$$\begin{aligned} {{\varvec{D}}}= {{\varvec{d}}}_e \cdot {\varvec{\sigma }}+ ({{\varvec{e}}}: {{\varvec{d}}}_e + {\varvec{\epsilon }}) \cdot {{\varvec{E}}}+ ({{\varvec{e}}}: {{\varvec{d}}}_q + {\varvec{\alpha }}) \cdot {{\varvec{H}}}\; , \end{aligned}$$
(18)

and

$$\begin{aligned} {{\varvec{B}}}= {{\varvec{d}}}_q \cdot {\varvec{\sigma }}+ ({{\varvec{q}}}: {{\varvec{d}}}_e + {\varvec{\alpha }}) \cdot {{\varvec{E}}}+ ({{\varvec{q}}}: {{\varvec{d}}}_q +{\varvec{\mu }}) \cdot {{\varvec{H}}}\; . \end{aligned}$$
(19)

In our approach, we use a coordinate-invariant setting based on the following invariants for the transversal isotropic material law

$$\begin{aligned} I_1= & {} \text {tr}\,{\varvec{\varepsilon }}\; , \quad I_2 = \text {tr}\, {\varvec{\varepsilon }}^2 \; , \quad I_4 = \text {tr}\,({\varvec{\varepsilon }}{{\varvec{m}}})\; , \quad I_5 = \text {tr}({\varvec{\varepsilon }}^2 {{\varvec{m}}})\; , \nonumber \\ J_1^e= & {} \text {tr} \,({{\varvec{E}}}\otimes {{\varvec{E}}}) \; , \quad J_2^e = \text {tr} \,({{\varvec{E}}}\otimes {{\varvec{a}}})\; , \quad K_1^e = \text {tr}\,({\varvec{\varepsilon }}({{\varvec{E}}}\otimes {{\varvec{a}}}))\; , \nonumber \\ J_1^m= & {} \text {tr} \,({{\varvec{H}}}\otimes {{\varvec{H}}}) \; , \quad J_2^m = \text {tr} \,({{\varvec{H}}}\otimes {{\varvec{a}}})\; , \quad K_1^m = \text {tr}\,({\varvec{\varepsilon }}({{\varvec{H}}}\otimes {{\varvec{a}}}))\; , \end{aligned}$$
(20)

with the second-order structural tensor \({{\varvec{m}}}:= {{\varvec{a}}}\otimes {{\varvec{a}}}\), then the quadratic electric enthalpy function \(\psi ^{*}\) is given with

$$\begin{aligned} \psi ^{*}= & {} \dfrac{1}{2} \lambda \, I_1^2 \, + \, \mu \, I_2\,+\, \omega _1\, I_5\, + \,\omega _2\, I_4^2\,+\,\omega _3 \, I_1\, I_4\nonumber \\&+\, \beta _1\, I_1\, J_2^e\,+\,\beta _2\, I_4\,J_2^e\,+\,\beta _3\, K_1^e\,+\,\gamma _1\,J_1^e\,+\,\gamma _2\,(J_2^e)^2\nonumber \\&+\, \kappa _1\, I_1\, J_2^m\,+\,\kappa _2\, I_4\,J_2^m\,+\,\kappa _3\, K_1^m\,+\,\xi _1\,J_1^m\,+\,\xi _2\,(J_2^m)^2 \; . \end{aligned}$$
(21)

Then, \({\varvec{\sigma }}= \partial _{{\varvec{\varepsilon }}}\psi ^{*}\), \({{\varvec{D}}}= -\partial _{{{\varvec{E}}}}\psi ^{*}\) and \({{\varvec{B}}}= -\partial _{{{\varvec{H}}}}\psi ^{*}\) appear as

$$\begin{aligned} {\varvec{\sigma }}= & {} \left( 2\,\omega _2\,I_4\,+\,\omega _3\,I_1 + \beta _2 \, J_2^e + \kappa _2 \, J_2^m \right) \,{{\varvec{m}}}+ 2 \, \mu \, {\varvec{\varepsilon }}\nonumber \\&+ \left( \lambda \; I_1 + \omega _3 \, I_4 + \beta _1 J_2^e + \kappa _1 J_2^m \right) \, \mathbf 1 + \omega _1 \left( {{\varvec{a}}}\,\otimes \,{\varvec{\varepsilon }}\,\cdot \,{{\varvec{a}}}+ {{\varvec{a}}}\,\cdot \,{\varvec{\varepsilon }}\,\otimes \,{{\varvec{a}}}\right) \nonumber \\&+ \dfrac{1}{2} \,\beta _3\,\left( {{\varvec{a}}}\,\otimes \,{{\varvec{E}}}\,+\,{{\varvec{E}}}\,\otimes \,{{\varvec{a}}}\right) + \dfrac{1}{2} \,\kappa _3\,\left( {{\varvec{a}}}\,\otimes \,{{\varvec{H}}}\,+\,{{\varvec{H}}}\,\otimes \,{{\varvec{a}}}\right) \; , \end{aligned}$$
(22)
$$\begin{aligned} {{\varvec{D}}}= & {} - (2\,\gamma _2\,J_2^e \,+\,\beta _1\,I_1 \,+\, \beta _2\,I_4)\,{{\varvec{a}}}- 2\,\gamma _1\,{{\varvec{E}}}\,- \beta _3\,{{\varvec{a}}}\,\cdot \, {\varvec{\varepsilon }}\;, \end{aligned}$$
(23)

and

$$\begin{aligned} {{\varvec{B}}}= - (2\,\xi _2\,J_2^m \,+\,\kappa _1\,I_1 \,+\, \kappa _2\,I_4)\,{{\varvec{a}}}- 2\,\xi _1\,{{\varvec{H}}}\,- \kappa _3\,{{\varvec{a}}}\,\cdot \, {\varvec{\varepsilon }}\;. \end{aligned}$$
(24)

With the second derivatives of Eqs. (22), (23) and (24), \(\mathbb {C} = \partial _{{\varvec{\varepsilon }}}{\varvec{\sigma }}\), \({{\varvec{e}}}= \partial _{{\varvec{\varepsilon }}}{{\varvec{D}}}\), \({{\varvec{q}}}= \partial _{{\varvec{\varepsilon }}}{{\varvec{B}}}\), \({\varvec{\epsilon }}= \partial _{{{\varvec{E}}}}{{\varvec{D}}}\) and \({\varvec{\mu }}= \partial _{{{\varvec{H}}}}{{\varvec{B}}}\), we get

$$\begin{aligned} \mathbb {C}= & {} \lambda \mathbf 1 \otimes \mathbf 1 \,+\, \omega _3 \,(\mathbf 1 \otimes {{\varvec{m}}}+ {{\varvec{m}}}\otimes \mathbf 1 ) \,+\, 2\,\omega _2\, {{\varvec{m}}}\otimes {{\varvec{m}}}\, + \, 2 \,\mu \mathbb {I} \,+\,\omega _1 \Xi \; , \end{aligned}$$
(25)
$$\begin{aligned} {{\varvec{e}}}= & {} -\beta _1 {{\varvec{a}}}\otimes \mathbf 1 \, - \,\beta _2\,{{\varvec{a}}}\otimes {{\varvec{m}}}\, - \,\beta _3\, {\varvec{\theta }}\;, \end{aligned}$$
(26)
$$\begin{aligned} {{\varvec{q}}}= & {} -\kappa _1 {{\varvec{a}}}\otimes \mathbf 1 \, - \kappa _2 {{\varvec{a}}}\otimes {{\varvec{m}}}- \,\kappa _3\, {\varvec{\theta }}\;, \end{aligned}$$
(27)
$$\begin{aligned} {\varvec{\epsilon }}= & {} -2\,\gamma _1\, \mathbf 1 \, + \,2\,\gamma _2\,{{\varvec{m}}}\;, \end{aligned}$$
(28)
$$\begin{aligned} {\varvec{\mu }}= & {} -2\,\xi _1\, \mathbf 1 \, - \,2\,\xi _2\,{{\varvec{m}}}\;, \end{aligned}$$
(29)

with the fourth-order unit tensor \(\mathbb {I}\), \(\Xi = {{\varvec{a}}}\otimes \mathbf 1 \otimes {{\varvec{a}}}+ {{\varvec{a}}}\otimes \mathbf 1 \otimes {{\varvec{a}}}\) and \({\varvec{\theta }}= \dfrac{1}{2}({{\varvec{a}}}\otimes \mathbf 1 + {{\varvec{a}}}\otimes \mathbf 1 )\). Taking these equations written in Voigt notation and renaming the parameters which are equal, we get with the preferred direction \({{\varvec{a}}}= {{\varvec{x}}}_3\) of the transversal isotropic material

$$\begin{aligned} \left[ \begin{array}{r} \sigma _{11} \\ \sigma _{22} \\ \sigma _{33} \\ \sigma _{12} \\ \sigma _{23} \\ \sigma _{13} \\ \end{array} \right] = \left[ \begin{array}{cccccc} c_{1111} &{} c_{1122} &{} c_{1133} &{} 0 &{} 0 &{} 0 \\ c_{1122} &{} c_{2222} &{} c_{2233} &{} 0 &{} 0 &{} 0 \\ c_{1133} &{} c_{2233} &{} c_{3333} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} c_{1313} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} c_{1212} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} c_{1212} \\ \end{array} \right] \left[ \begin{array}{c} \varepsilon _{11} \\ \varepsilon _{22} \\ \varepsilon _{33} \\ 2\varepsilon _{12} \\ 2\varepsilon _{23} \\ 2\varepsilon _{13} \\ \end{array} \right] - \left[ \begin{array}{ccc} 0 &{} 0 &{} e_{311} \\ 0 &{} 0 &{} e_{311} \\ 0 &{} 0 &{} e_{333} \\ 0 &{} 0 &{} 0 \\ 0 &{} e_{123} &{} 0 \\ e_{123} &{} 0 &{} 0 \\ \end{array} \right] \left[ \begin{array}{c} E_{1} \\ E_{2} \\ E_{3} \\ \end{array} \right] \, , \end{aligned}$$
(30)

and

$$\begin{aligned} \left[ \begin{array}{c} D_{1} \\ D_{2} \\ D_{3} \\ \end{array} \right] = \left[ \begin{array}{cccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} e_{123}\\ 0 &{} 0 &{} 0 &{} 0 &{} e_{123} &{} 0 \\ e_{311} &{} e_{311} &{} e_{333} &{} 0 &{} 0 &{} 0 \\ \end{array} \right] \left[ \begin{array}{c} \varepsilon _{11} \\ \varepsilon _{22} \\ \varepsilon _{33} \\ 2\varepsilon _{12} \\ 2\varepsilon _{23} \\ 2\varepsilon _{13} \\ \end{array} \right] + \left[ \begin{array}{ccc} \epsilon _{11} &{} 0 &{} 0 \\ 0 &{} \epsilon _{11} &{} 0 \\ 0 &{} 0 &{} \epsilon _{33} \\ \end{array} \right] \left[ \begin{array}{c} E_{1} \\ E_{2} \\ E_{3} \\ \end{array} \right] \;. \end{aligned}$$
(31)

We can identify

$$\begin{aligned} \begin{array}{ccc} \lambda = c_{1122} \;, &{}\mu = \dfrac{1}{2}(c_{1111}-c_{1122})\;, &{}\omega _1 = 2\, c_{1212} + c_{1122} - c_{1111} \;, \\ \omega _2 = \dfrac{1}{2}(c_{1111} + c_{3333}) - 2\,c_{1212} - c_{1133} \;, &{} \omega _3 = c_{1133} - c_{1122} \;, &{}\beta _1 = -e_{311} \;, \\ \beta _2 = e_{311} - e_{333} + 2\,e_{123} \;, &{} \beta _3 = -2\;e_{123}\;, &{}\gamma _1 = -\dfrac{1}{2} \epsilon _{11}\;, \\ \gamma _2 = \dfrac{1}{2}(\epsilon _{11} - \epsilon _{33})\;, &{}\kappa _1 = -q_{311}\;, &{}\kappa _2 = q_{311} - q_{333} + 2\,q_{123}\;, \\ \kappa _3 = -2\;q_{123}\;, &{}\xi _1 = - \dfrac{1}{2} \mu _{11}\;, &{}\xi _2 = \dfrac{1}{2} (\mu _{11} -\mu _{33})\;.\\ \end{array} \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labusch, M., Lemke, V., Schmitz-Antoniak, C. et al. FEM analysis of a multiferroic nanocomposite: comparison of experimental data and numerical simulation. Arch Appl Mech 89, 1157–1170 (2019). https://doi.org/10.1007/s00419-019-01534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01534-z

Keywords

Navigation