Skip to main content
Log in

Uncoupled thermoelastic problem of a functionally graded thermosensitive rectangular plate with convective heating

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The main objective of the present paper is to study the temperature and thermal stress analysis of a functionally graded rectangular plate with temperature-dependent thermophysical characteristics of materials under convective heating. The nonlinear heat conduction equation is reduced to linear form using Kirchhoff’s variable transformation. Analytic solution of the heat conduction equation is obtained in the transform domain by developing an integral transform technique for convective-type boundary conditions. Goodier’s displacement function and Boussinesq harmonic functions are used to obtain the displacement profile and its associated thermal stresses. A mathematical model is prepared for functionally graded ceramic–metal-based material. The results are illustrated numerically and depicted graphically for both thermosensitive and nonthermosensitive functionally graded plate. During this study, one observed that notable variations are seen in the temperature and stress profile, due to the variation in the material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Noda, N.: Thermal stresses in materials with temperature dependent properties. Therm. Stress. I(1), 391–483 (1986)

    Google Scholar 

  2. Popovych, V.S.: On the solution of stationary problems for the thermal conductivity of heat-sensitive bodies in contact. J. Sov. Math. 65, 1762–1766 (1993)

    Article  Google Scholar 

  3. Lizarev, A.D.: The stressed state of a thermosensitive annular plate of variable thickness. J. Sov. Math. 65, 1848–1851 (1993)

    Article  Google Scholar 

  4. Popovych, V.S., Makhorkin, I.M.: On the solution of heat-conduction problems for thermosensitive bodies. J. Math. Sci. 88, 352–359 (1998)

    Article  MathSciNet  Google Scholar 

  5. Awaji, H., Takenaka, H., Honda, S., Nishikawa, T.: Temperature/stress distributions in a stress-relief-type plate of functionally graded materials under thermal shock. JSME Int. J. 44, 1059–1065 (2001)

    Article  Google Scholar 

  6. Tanigawa, Y., Kawamura, R., Ishida, S.: Derivation of fundamental equation systems of plane isothermal and thermoelastic problems for in-homogeneous solids and its applications to semi-infinite body and slab. Theor. Appl. Mech. 51, 267–279 (2002)

    MATH  Google Scholar 

  7. Kushnir, R.M., Popovych, V.S.: Stressed state of a thermosensitive plate in a central-symmetric temperature field. Mater. Sci. 42, 145–154 (2006)

    Article  Google Scholar 

  8. Popovych, V.S., Vovk, O.M., Harmatii, H.Y.: Thermoelastic state of a thermosensitive sphere under the conditions of complex heat exchange with the environment. Mater. Sci. 42, 756–770 (2006)

    Article  Google Scholar 

  9. Kushnir, R.M., Popovych, V.S.: Heat Conduction Problems of Thermosensitive Solids Under Complex Heat Exchange. INTECH, Rijeka (2011)

    Google Scholar 

  10. Lamba, N.K., Walde, R.T., Manthena, V.R., Khobragade, N.W.: Stress functions in a hollow cylinder under heating and cooling process. J. Stat. Math. 3, 118–124 (2012)

    Google Scholar 

  11. Hadi, A., Rastgoo, A., Daneshmehr, A.R., Ehsani, F.: Stress and strain analysis of functionally graded rectangular plate with exponentially varying properties. Indian J. Mater. Sci. vol. 2013, Article ID 20623, 7 pages (2013). https://doi.org/10.1155/2013/206239

  12. Popovych, V.S.: Methods for Determination of the Thermo-Stressed State of Thermally Sensitive Solids Under Complex Heat Exchange Conditions, Encyclopedia of Thermal Stresses, vol. 6, pp. 2997–3008. Springer, Berlin (2014)

    Google Scholar 

  13. Manthena, V.R., Lamba, N.K., Kedar, G.D., Deshmukh, K.C.: Effects of stress resultants on thermal stresses in a functionally graded rectangular plate due to temperature dependent material properties. Int. J. Thermodyn. 19, 235–242 (2016)

    Article  Google Scholar 

  14. Ganczarski, A., Szubartowski, D.: Plane stress state of FGM thick plate under thermal loading. Arch. Appl. Mech. 86, 111–120 (2016)

    Article  Google Scholar 

  15. Manthena, V.R., Lamba, N.K., Kedar, G.D.: Transient thermoelastic problem of a nonhomogenous rectangular plate. J. Therm. Stress. 40, 627–640 (2017)

    Article  Google Scholar 

  16. Mahapatra, T.R., Kar, V.R., Panda, S.K., Mehar, K.: Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading. J. Therm. Stress. 40, 1184–1199 (2017)

    Article  Google Scholar 

  17. Eisenberger, M., Elishakoff, I.: A general way of obtaining novel closed-form solutions for functionally graded columns. Arch. Appl. Mech. 87, 1641–1646 (2017)

    Article  Google Scholar 

  18. Kumar, R., Manthena, V.R., Lamba, N.K., Kedar, G.D.: Generalized thermoelastic axi-symmetric deformation problem in a thick circular plate with dual phase lags and two temperatures. Mater. Phys. Mech. 32, 123–132 (2017)

    Google Scholar 

  19. Nikolić, A.: Free vibration analysis of a non-uniform axially functionally graded cantilever beam with a tip body. Arch. Appl. Mech. 87, 1227–1241 (2017)

    Article  Google Scholar 

  20. Rizov, V.: Delamination fracture in a functionally graded multilayered beam with material nonlinearity. Arch. Appl. Mech. 87, 1037–1048 (2017)

    Article  Google Scholar 

  21. Manthena, V.R., Kedar, G.D.: Transient thermal stress analysis of a functionally graded thick hollow cylinder with temperature-dependent material properties. J. Therm. Stress. 41, 568–582 (2018)

    Article  Google Scholar 

  22. Manthena, V.R., Lamba, N.K., Kedar, G.D.: Thermoelastic analysis of a rectangular plate with nonhomogeneous material properties and internal heat source. J. Solid Mech. 10, 200–215 (2018)

    Google Scholar 

  23. Manthena, V.R., Kedar, G.D., Deshmukh, K.C.: Thermal stress analysis of a thermosensitive functionally graded rectangular plate due to thermally induced resultant moments. Multidiscip. Model. Mater. Struct. (2018). https://doi.org/10.1108/MMMS-01-2018-0009

    Google Scholar 

  24. Ozisik, M.N.: Boundary Value Problems of Heat Conduction. Dover Publications, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Manthena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Following [24], we define the integral transform and its inversion formula of the temperature function \(\theta (x, y,t)\) with respect to the space variable x, in \(0\le x\le a\) as

$$\begin{aligned} \left( {\begin{array}{l} \hbox {Integral} \\ \hbox {Transform} \\ \end{array}} \right) \bar{{\theta }}(\beta _n ,y, t)= & {} \int \limits _{{x}'=0}^a S(\beta _n , {x}') \bar{{\theta }}({x}', y, t) \mathrm{d}{x}' \end{aligned}$$
(A1)
$$\begin{aligned} \left( {\begin{array}{l} \hbox {Inversion} \\ \hbox {Formula} \\ \end{array}} \right) \theta (x, y,t)= & {} \sum _{n=1}^\infty S(\beta _n , x) \bar{{\theta }}(\beta _n , y,t) \end{aligned}$$
(A2)

Here, \(S(\beta _n , x)\) is the kernel of the transform given by

$$\begin{aligned} S(\beta _n , x)=A_1 (\beta _n \cos \beta _n x+\varepsilon _1 \sin \beta _n x) \end{aligned}$$
(A3)

where

$$\begin{aligned} A_1 =\left[ {\sqrt{2}/\sqrt{\left( {\beta _n^2 +\varepsilon _1^2 } \right) \left( {a+\frac{\varepsilon _2 }{\beta _n^2 +\varepsilon _2^2 }} \right) +\varepsilon _1 }} \right] \end{aligned}$$
(A4)

Here, \({\beta _n{^{\prime }}}\hbox {s}\) are the positive roots of the transcendental equation

$$\begin{aligned} \tan \beta _n a=\frac{\beta _n (\varepsilon _1 +\varepsilon _2 )}{\beta _n^2 -\varepsilon _1 \varepsilon _2 } \end{aligned}$$
(A5)

Similarly, the integral transform and its inversion formula of the temperature function \(\bar{{\theta }}(\beta _n ,y, t)\) with respect to the space variable y, in \(0\le y\le b\) are defined as [24]

$$\begin{aligned} \left( {\begin{array}{l} \hbox {Integral} \\ \hbox {Transform} \\ \end{array}} \right) \bar{{\bar{{\theta }}}}(\beta _n ,\alpha _m , t)= & {} \int \limits _{{y}'=0}^b S(\alpha _m , {y}') \bar{{\theta }}(\beta _n , {y}', t) \mathrm{d} {y}' \end{aligned}$$
(A6)
$$\begin{aligned} \left( {\begin{array}{l} \hbox {Inversion} \\ \hbox {Formula} \\ \end{array}} \right) \bar{{\theta }}(\beta _n ,y, t)= & {} \sum \limits _{m=1}^\infty S(\alpha _m , y) \bar{{\bar{{\theta }}}}(\beta _n ,\alpha _m , t) \end{aligned}$$
(A7)

Here, \(S(\alpha _m , y)\) is the kernel of the transform given by

$$\begin{aligned} S(\alpha _m , y)=A_2 (\alpha _m \cos \alpha _m y+\varepsilon _1 \sin \alpha _m y) \end{aligned}$$
(A8)

where

$$\begin{aligned} A_2 =\left[ {\sqrt{2}/\sqrt{\left( {\alpha _m^2 +\varepsilon _1^2 } \right) \left( {a+\frac{\varepsilon _2 }{\alpha _m^2 +\varepsilon _2^2 }} \right) +\varepsilon _1 }} \right] \end{aligned}$$
(A9)

Here, \({\beta _n{^{\prime }}}\hbox {s}\) are the positive roots of the transcendental equation

$$\begin{aligned} \tan \alpha _m b=\frac{\alpha _m (\varepsilon _1 +\varepsilon _2 )}{\alpha _m^2 -\varepsilon _1 \varepsilon _2 }. \end{aligned}$$
(A10)

Appendix B

The volume fraction distribution of metal obeying simple power law with exponent \(\gamma \) is given as [5]

$$\begin{aligned} f_m (x)=1-x^{\gamma }\quad \hbox {for } \gamma \ge 0 \end{aligned}$$
(B1)

where \(f_m (x)\) is the local volume fraction of metal in a functionally graded plate and \(\gamma \) is a parameter that describes the volume fraction of metal.

The thermal conductivity of the functionally graded material dependent on x is expressed using the thermal conductivities of metals \(k_m \) and of ceramics \(k_c \) with the volume fractions of metals \(f_m (x)\) and ceramics \(1-f_m (x)\) as follows:

$$\begin{aligned} k(x,T)=k_m (T)f_m (x)+k_c (T)(1-f_m (x)) \end{aligned}$$
(B2)

Inverse transformation We substitute Eq. (B2) in Eq. (15) to obtain the inverse transformation of Eq. (15) as

$$\begin{aligned} \theta (T)= \int _{T_0 }^{T } {(k_m (T)f_m (x)+k_c (T)(1-f_m (x))} \mathrm{d} T \end{aligned}$$
(B3)

To determine T from Eq. (B3), we analyze the discrete values of \(\theta \) in a thin layer where the volume fraction and the material properties are assumed to be constants for each layer. Hence, we obtain the following approximation:

$$\begin{aligned} \theta (T)= f_m (x) \int _{_{T_0 } }^{T } {k_m (T) \mathrm{d} T+(1-f_m (x) \int \limits _{T_0 }^T k_c (T))} \mathrm{d} T \end{aligned}$$
(B4)

Following Noda [1], we assume the temperature-dependent thermal conductivity as

$$\begin{aligned} k (T) = k_0 \exp (\varpi _1 T) , \varpi _1 <0 \end{aligned}$$

Hence, Eq. (A4) becomes

$$\begin{aligned} \theta = (1/\varpi _1 ) [[\exp (\varpi _1 T)-\exp (\varpi _1 T_0 )] u(x)] \end{aligned}$$
(B5)

where \(u(x)=[f_m (x)(k_{m_0 } -k_{c_0 } ) + k_{c_0 } ]\).

Using Eq. (B5) in Eq. (22), we obtain

$$\begin{aligned} T(x,y, t)= & {} \frac{1}{\varpi _1 } \log _e [\exp (\varpi _1 T_0 )+h (x,y, t)] =\frac{1}{\varpi _1 }\log _e \left[ {\exp (\varpi _1 T_0 ) \left( {1+\frac{h (x,y, t)}{\exp (\varpi _1 T_0 )}} \right) } \right] \end{aligned}$$
(B6)
$$\begin{aligned} h (x,y, t)= & {} \sum _{m=1}^\infty \sum _{n=1}^\infty \{(\varpi _1 / u(x)) S(\beta _n , x) S(\alpha _m , y)\times [E_1 \exp (-\omega t)+E_2 \exp (\omega t)+E_3 \exp (-A_2 t)]\}\nonumber \\ \end{aligned}$$
(B7)

We use the following logarithmic expansion:

$$\begin{aligned}&\log _e [(h (x, y, t)/\exp (\varpi _1 T_0 ))+1] = [h (x, y, t)/\exp (\varpi _1 T_0 )] \nonumber \\&\quad +\, (1/2) [(h (x, y, t))/\exp (\varpi _1 T_0 )]^{2} + (1/3) [(h (x, y, t))/\exp (\varpi _1 T_0 )]^{3} + \cdots \end{aligned}$$
(B8)

We observe that \([h (x, y, t)]^{L}\) given in Eq. (B7) converges to zero as L tends to infinity.

Also the truncation error in Eq. (B8) is observed as \(4.113\times 10^{-5}.\)

Hence, for the sake of brevity, neglecting the terms with order more than one, we obtain

$$\begin{aligned} \log _e [(h (x, y, t)/\exp (\varpi _1 T_0 ))+1] \cong [h (x, y, t)/\exp (\varpi _1 T_0 )] \end{aligned}$$

Hence, Eq. (B6) becomes

$$\begin{aligned} T(x, y, t)\cong & {} T_0 +\bigg [\{1/u (x)\exp (\varpi _1 T_0 )\}\left\{ \sum _{m=1}^\infty \sum _{n=1}^\infty \{S(\beta _n , x) S(\alpha _m , y) \right. \\&\left. \times \, [E_1 \exp (-\omega t)+E_2 \exp (\omega t)+E_3 \exp (-A_2 t)]\}\phantom {T(x, y, t)\cong T_0 +[\{1/u (x)\exp (\varpi _1 T_0 )\}\left\{ \sum _{m=1}^\infty \sum _{n=1}^\infty \{S(\beta _n , x) S(\alpha _m , y) \right. }\right\} \bigg ] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manthena, V.R. Uncoupled thermoelastic problem of a functionally graded thermosensitive rectangular plate with convective heating. Arch Appl Mech 89, 1627–1639 (2019). https://doi.org/10.1007/s00419-019-01532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01532-1

Keywords

Navigation