Skip to main content
Log in

Analytic solution for reflection and transmission coefficients of joints in three-dimensional truss-type structural networks

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an analytic solution method to evaluate transient response of the joints in the truss-type structural networks. The analytic method models the wave propagation along the elastic members connected to the joints and derives the functions for the reflection and transmission coefficients for the structural joints. The coefficients of wave reflection and transmission across the joints are functions of material properties and geometrical parameters of the elements connected to the joint. The present analytic solution considers the effects of abrupt change in material properties as well as the alignment of connected elements on the transmission and reflection coefficients of the joints. The analytic solution method derives the functions for the transmission and reflection coefficients at the connection point of two different coaxial elements as well as the joints in planar and space frame structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Renno, J.M., Mace, B.R.: Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach. J. Sound Vib. 332, 2149–2164 (2013)

    Article  Google Scholar 

  2. Li, Y., Zhu, Z., Li, B., Deng, J., Xie, H.: Study on the transmission and reflection of stress waves across joints. Int. J. Rock Mech. Min. Sci. 48, 364–371 (2011)

    Article  Google Scholar 

  3. Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  4. Chattopadhyay, A.: Wave reflection in triclinic crystalline medium. Arch. Appl. Mech. 76, 65–74 (2006)

    Article  MATH  Google Scholar 

  5. Kumar, R., Kaur, M.: Reflection and refraction of plane waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures. Arch. Appl. Mech. 84, 571–590 (2014)

    Article  MATH  Google Scholar 

  6. Eringen, A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gei, M.: Elastic waves guided by a material interface. Eur. J. Mech. A Solids 27, 328–345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leung, A.Y.T.: Dynamic Stiffness and Substructures. Springer, Berlin (2012)

    Google Scholar 

  9. Jun, L., Yuchen, B., Peng, H.: A dynamic stiffness method for analysis of thermal effect on vibration and buckling of a laminated composite beam. Arch. Appl. Mech. 87, 1295–1315 (2017)

    Article  Google Scholar 

  10. Langley, R.S.: Application of the dynamic stiffness method to the free and forced vibrations of aircraft panels. J. Sound Vib. 135, 319–331 (1989)

    Article  Google Scholar 

  11. Banerjee, J.R., Sobey, A.J.: Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. Int. J. Solids Struct. 42, 2181–2197 (2005)

    Article  MATH  Google Scholar 

  12. Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transformation. Springer, New York (2012)

    Google Scholar 

  13. Chakraborty, A., Gopalakrishnan, S.: A spectrally formulated plate element for wave propagation analysis in anisotropic material. Comput. Methods Appl. Mech. Eng. 194, 4425–4446 (2005)

    Article  MATH  Google Scholar 

  14. Ajith, V., Gopalakrishnan, S.: Wave propagation in stiffened structures using spectrally formulated finite element. Eur. J. Mech. A Solids 41, 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gopalakrishnan, S., Doyle, J.F.: Wave propagation in connected waveguides of varying cross-section. J. Sound Vib. 175, 347–363 (1994)

    Article  MATH  Google Scholar 

  16. Waki, Y., Mace, B.R., Brennan, M.J.: Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J. Sound Vib. 327, 92–108 (2009)

    Article  Google Scholar 

  17. Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Pipeline inspection using a torsional guided-waves inspection system. Part 2: defect sizing by the wave finite element method. Int. J. Appl. Mech. 6, 1450035 (2014)

    Article  Google Scholar 

  18. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 40802 (2014)

    Article  Google Scholar 

  19. Droz, C., Lainé, J.-P., Ichchou, M.N., Inquiété, G.: A reduced formulation for the free-wave propagation analysis in composite structures. Compos. Struct. 113, 134–144 (2014)

    Article  Google Scholar 

  20. Zhou, C.W., Lainé, J.P., Ichchou, M.N., Zine, A.M.: Wave finite element method based on reduced model for one-dimensional periodic structures. Int. J. Appl. Mech. 7, 1550018 (2015)

    Article  Google Scholar 

  21. Howard, S.M., Pao, Y.-H.: Analysis and experiments on stress waves in planar trusses. J. Eng. Mech. 124, 884–891 (1998)

    Article  Google Scholar 

  22. Cai, G.Q., Lin, Y.K.: Wave propagation and scattering in structural networks. J. Eng. Mech. 117, 1555–1574 (1991)

    Article  Google Scholar 

  23. Pochhamer, L.: Uber die Fortpflanzzungsgeshwindigkeiten kleiner Schwingungen in einem unbergrenzten isotropen Kreiscylinder. Zeitschrift fur Mathematik 81, 324 (1876)

    Google Scholar 

  24. Chree, C.: The equations of an isotropic elastic solid in polar and cylindrical co-ordinates their solution and application. Trans. Camb. Philos. Soc. 14, 250 (1889)

    Google Scholar 

  25. Rigby, S.E., Barr, A.D., Clayton, M.: A review of Pochhammer–Chree dispersion in the Hopkinson bar. Proc. Inst. Civil Eng. Eng. Comput. Mech. 171(1), 3–13 (2018)

  26. Ilyashenko, A.V., Kuznetsov, S.V.: Pochhammer-Chree waves: polarization of the axially symmetric modes. Arch. Appl. Mech. 88(8), 1385–1394 (2018)

    Article  Google Scholar 

  27. Jackson, D.: Fourier Series and Orthogonal Polynomials. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  28. Abadi, M.T.: Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions. J. Mech. Sci. Technol. 29, 4105–4111 (2015)

    Article  Google Scholar 

  29. Abadi, M.T.: An analytical model to predict the impact response of one-dimensional structures. Math. Mech. Solids 22, 2253–2268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tahaye Abadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahaye Abadi, M. Analytic solution for reflection and transmission coefficients of joints in three-dimensional truss-type structural networks. Arch Appl Mech 89, 1521–1536 (2019). https://doi.org/10.1007/s00419-019-01525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01525-0

Keywords

Navigation