Skip to main content
Log in

Force finding of cable–strut structures using a symmetry-based method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Force finding of cable–strut structures is to identify self-equilibrated pre-stress states for structures with given shape, which is a crucial step in the structural design of flexible structures since pre-stresses significantly affect their mechanical behaviors. Utilizing symmetry properties of structures is generally considered as a practical way to facilitate the force finding process. To indicate the symmetric feature of structures, an algebraic indicator is proposed in the context of the equilibrium matrix theory. Furthermore, it is found that the orthogonal projection onto the null space of the equilibrium matrix could show the symmetry properties of structures geometrically. Then, a symmetry-based method of computing feasible pre-stress states is developed in the light of the above orthogonal projection. Finally, the proposed method is applied on three examples to confirm its validity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Linkwitz, K., Schek, H.J.: Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen. Ing. Arch. 40(3), 145–158 (1971)

    Article  Google Scholar 

  2. Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3(1), 115–134 (1974)

    Article  MathSciNet  Google Scholar 

  3. Barnes, M.R.: Form finding and analysis of tension space structures by dynamic relaxation. Ph.D. thesis, City University London (1977)

  4. Barnes, M.R.: Form finding and analysis of tension structures by dynamic relaxation. Int. J. Space Struct. 14(2), 89–104 (1999)

    Article  Google Scholar 

  5. Motro, R.: Tensegrity: Structural Systems for the Future. Elsevier, Amsterdam (2003)

    Book  Google Scholar 

  6. Zhang, L., Maurin, B., Motro, R.: Form-finding of nonregular tensegrity systems. J. Struct. Eng. ASCE 43(18–19), 5658–5673 (2006)

    Google Scholar 

  7. Haug, E., Powell, G.H.: Finite element analysis of nonlinear membrane structures. In: IASS Pacific Symposium, Part II on Tension Structures and Space Frames, Tokyo and Kyoto, pp. 124–135 (1972)

  8. Crisfield, M.A.: Non-linear finite element analysis of solids and structures. Meccanica 32(6), 586–587 (1997)

    Article  Google Scholar 

  9. Carstens, S., Kuhl, D.: Non-linear static and dynamic analysis of tensegrity structures by spatial and temporal GALERKIN methods. J. Int. Assoc. Shell Spat. Struct. 46(2), 24–35 (2005)

    Google Scholar 

  10. Pagitz, M., Mirats-Tur, J.M.: Finite element based form-finding algorithm for tensegrity structures. Int. J. Solids Struct. 46(17), 3235–3240 (2009)

    Article  MATH  Google Scholar 

  11. Estrada, G.G., Bungartz, H.J., Mohrdieck, C.: Numerical form-finding of tensegrity structures. Int. J. Solids Struct. 43(22–23), 6855–6868 (2006)

    Article  MATH  Google Scholar 

  12. Zhang, J.Y., Ohsaki, M.: Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 43(18–19), 5658–5673 (2006)

    Article  MATH  Google Scholar 

  13. Tran, H., Lee, J.: Advanced form-finding for cable–strut structures. Int. J. Solids Struct. 47(14–15), 1785–1794 (2010)

    Article  MATH  Google Scholar 

  14. Lee, S., Lee, J.: Form-finding of tensegrity structures with arbitrary strut and cable members. Int. J. Mech. Sci. 85(2014), 55–62 (2014)

    Article  Google Scholar 

  15. Masic, M., Skelton, R.E., Gill, P.E.: Algebraic tensegrity form-finding. Int. J. Solids Struct. 42(16–17), 4833–4858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohsaki, M., Zhang, J.Y.: Nonlinear programming approach to form-finding and folding analysis of tensegrity structures using fictitious material properties. Int. J. Solids Struct. 69(2015), 1–10 (2015)

    Article  Google Scholar 

  17. Xu, X., Luo, Y.: Form-finding of nonregular tensegrities using a genetic algorithm. Mech. Res. Commun. 37(1), 85–91 (2010)

    Article  MATH  Google Scholar 

  18. Yamamoto, M., Gan, B.S., Fujita, K., Kurokawa, J.: A genetic algorithm based form-finding for tensegrity structure. Proc. Eng. 14, 2949–2956 (2011)

    Article  Google Scholar 

  19. Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 49(5), 739–747 (2012)

    Article  Google Scholar 

  20. Koohestani, K., Guest, S.D.: A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids Struct. 50(19), 2995–3007 (2013)

    Article  Google Scholar 

  21. Li, Y., Feng, X., Cao, Y., Gao, H.: A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int. J. Solids Struct. 47(14–15), 1888–1898 (2010)

    Article  MATH  Google Scholar 

  22. Xu, X., Luo, Y.: Force finding of tensegrity systems using simulated annealing algorithm. J. Struct. Eng. ASCE 136(8), 1027–1031 (2010)

    Article  Google Scholar 

  23. Chen, Y., Feng, J., Wu, Y.: Prestress stability of pin-jointed assemblies using ant colony systems. Mech. Res. Commun. 41, 30–36 (2012)

    Article  Google Scholar 

  24. Hernàndez-Juan, S., Mirats-Tur, J.M.: Tensegrity frameworks: static analysis review. Mech. Mach. Theory 43(7), 859–881 (2008)

    Article  MATH  Google Scholar 

  25. Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 26(3), 241–255 (2011)

    Article  Google Scholar 

  26. Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 22(4), 409–428 (1986)

    Article  Google Scholar 

  27. Pellegrino, S.: Structural computations with the singular value decomposition of the equilibrium matrix. Int. J. Solids Struct. 30(21), 3025–3035 (1993)

    Article  MATH  Google Scholar 

  28. Quirant, J., Kazi-Aoual, M.N., Laporte, R.: Tensegrity systems: the application of linear programmation in search of compatible self-stress states. J. Int. Assoc. Shell Spat. Struct. 44(1), 18 (2003)

    Google Scholar 

  29. Quirant, J.: Self-stressed systems comprising elements with unilateral rigidity: self-stress States, mechanisms and tension setting. Int. J. Space Struct. 22(4), 203–214 (2007)

    Article  Google Scholar 

  30. Sánchez, R., Maurin, B., Kazi-Aoual, M.N., Motro, R.: Self-stress states identification and localization in modular tensegrity grids. Int. J. Space Struct. 22(4), 215–224 (2007)

    Article  Google Scholar 

  31. Zhou, J., Chen, W., Zhao, B., Dong, S.: A feasible symmetric state of initial force design for cable–strut structures. Arch. Appl. Mech. 87(8), 1385–1397 (2017)

    Article  Google Scholar 

  32. Ströbel, D.: Computational modeling concepts. In: The Ninth International Workshop on the Design and Practical Realization of Architectural Membrane Structures, Berlin (2004)

  33. Zhang, L., Chen, W., Dong, S.: Initial pre-stress finding procedure and structural performance research for Levy cable dome based on linear adjustment theory. J. Zhejiang Univ. Sci. A 8(9), 1366–1372 (2007)

    Article  MATH  Google Scholar 

  34. Ren, T., Chen, W., Fu, G.: Initial pre-stress finding and structural behaviors analysis of cable net based on linear adjustment theory. J. Shanghai Jiao Tong Univ. 13(2), 155–160 (2008)

    Article  MATH  Google Scholar 

  35. Koohestani, K.: Automated element grouping and self-stress identification of tensegrities. Eng. Comput. 32(6), 1643–1660 (2015)

    Article  Google Scholar 

  36. Lee, S., Lee, J.: Advanced automatic grouping for form-finding of tensegrity structures. Struct. Multidiscip. Optim. 55(2017), 1–10 (2016)

    Google Scholar 

  37. Tran, H., Lee, J.: Initial self-stress design of tensegrity grid structures. Comput. Struct. 88(9–10), 558–566 (2010)

    Article  Google Scholar 

  38. Raj, R.P., Guest, S.D.: Using symmetry for tensegrity form-finding. J. Int. Assoc. Shell Spat. Struct. 47(3), 245–252 (2006)

    Google Scholar 

  39. Kangwai, R.D., Guest, S.D.: Symmetry-adapted equilibrium matrices. Int. J. Solids Struct. 37(11), 1525–1548 (2000)

    Article  MATH  Google Scholar 

  40. Zhang, J.Y., Guest, S.D., Ohsaki, M.: Symmetric prismatic tensegrity structures. Part II: symmetry-adapted formulations. Int. J. Solids Struct. 46(1), 15–30 (2009)

    Article  MATH  Google Scholar 

  41. Chen, Y., Feng, J., Ma, R., Zhang, Y.: Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable–strut structures. J. Struct. Eng. ASCE 141(10), 1–11 (2015)

    Google Scholar 

  42. Zhou, J., Chen, W., Zhao, B., Qiu, Z., Dong, S.: Distributed indeterminacy evaluation of cable–strut structures: formulations and applications. J. Zhejiang Univ. Sci. A 16(9), 737–748 (2015)

    Article  Google Scholar 

  43. Ströbel, D.: Die Anwendung der Ausgleichungsrechnung auf Elastomechanische Systeme. PhD, Universität Stuttgart (1995)

  44. Tran, H., Park, H., Lee, J.: A unique feasible mode of prestress design for cable domes. Finite Elem. Anal. Des. 59, 44–54 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Chen, W., Hu, J. et al. Force finding of cable–strut structures using a symmetry-based method. Arch Appl Mech 89, 1473–1484 (2019). https://doi.org/10.1007/s00419-019-01517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01517-0

Keywords

Navigation