Skip to main content
Log in

Internal friction and the Stieltjes analytic representation of the effective properties of two-dimensional viscoelastic composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Mathematical model for viscous internal friction is suggested. The model relates the viscous phenomena on the grain boundaries in a polycrystalline composite to the spectral measure in the analytic representation of the effective viscoelastic properties. This spectral measure contains all information about the geometry of a finely structured material. The spectral measure can be recovered from the measurements of viscoelastic effective properties over a range of frequencies. The Stieltjes analytic representation of the effective modulus is derived for the two-dimensional viscoelastic problem. It is shown that the spectral function in this representation determines the internal memory variables and the viscous internal friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maxwell, J.C.: On the viscosity or internal friction of air and other gases, the Bakerian lecture. Philos. Trans. R. Soc. Lond. 156, 249–268 (1866)

    Article  Google Scholar 

  2. Ke, T.S.: Experimental evidence of the viscous behavior of grain boundaries in metals. Phys. Rev. 71, 533–546 (1947)

    Article  Google Scholar 

  3. Mott, N.F.: Slip at grain boundaries and grain growth in metals. Proc. Phys. Soc. 60, 391–394 (1948)

    Article  MATH  Google Scholar 

  4. Ke, T.S.: A grain boundary model and the mechanism of viscous intercrystalline slip. J. Appl. Phys. 20, 274–280 (1949)

    Article  MATH  Google Scholar 

  5. Zener, C.: Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago (1948)

    MATH  Google Scholar 

  6. Nowick, A.S., Berry, B.S.: Anelastic Relaxation in Crystalline Solids. Academic Press, New York (1972)

    Google Scholar 

  7. McGrum, M.G., Reed, B.E., Williams, G.: Anelastic and Dielectric Effects in Polymeric Solids. Wiley, New York (1967)

    Google Scholar 

  8. Lakes, R.: Viscoelastic Solids. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  9. Blanter, M.S., Golovin, I.S., Neuhuser, H., Sinning, H.-R.: Internal Friction in Metallic Materials. Springer, Berlin (2007)

    Google Scholar 

  10. Schaller, R., Barrault, S., Zysset, P.: Mechanical spectroscopy of bovine compact bone. Mater. Sci. Eng. A 370(1–2), 569–574 (2004)

    Article  Google Scholar 

  11. Dansereau, V., Weiss, J., Saramito, P., Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling. The Cryosphere 10, 1339–1359 (2016)

    Article  Google Scholar 

  12. Schulson, E.M., Fortt, A.L., Iliescu, D., Renshaw, C.E.: Failure envelope of first-year Arctic sea ice: the role of friction in compressive fracture. J. Geophys. Res. 111, C11S25 (2006)

    Article  Google Scholar 

  13. de Batist, R.: Internal Friction and Structural Defects in Crystalline Solids. North-Holland Publishing Company, Amsterdam (1972)

    Google Scholar 

  14. Schaller, R., Fantozzi, G., Gremaud, G.: Mechanical Spectroscopy. Trans Tech Publications Ltd., Stafa-Zurich (2001)

    Google Scholar 

  15. Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900 (1956)

    Article  MathSciNet  Google Scholar 

  16. Ariza, M.P., Ortiz, M.: Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ration. Mech. Anal. 178, 149–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. MacPherson, R.D., Srolovitz, D.J.: The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446, 1053–1055 (2007)

    Article  Google Scholar 

  18. Taylor, J.E., Cahn, J.W.: Shape accommodation of a rotating embedded crystal via a new variational formulation. Interfaces Free Bound. 9, 493–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Conti, S., Garroni, A., Mller, S.: Singular kernels, multiscale decomposition of microstructure, and dislocation models. Arch. Ration. Mech. Anal. 199, 779–819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berdichevsky, V.L.: Thermodynamics of microstructure evolution: grain growth. Int. J. Eng. Sci. 57, 50–78 (2012)

    Article  MATH  Google Scholar 

  21. Conti, S., Gladbach, P.: A line-tension model of dislocation networks on several slip planes. Mech. Mater. 90, 140–147 (2015)

    Article  Google Scholar 

  22. Zhang, L., Han, J., Xiang, Y., Srolovitz, D.J.: Equation of motion for a grain boundary. Phys. Rev. Lett. 119, 246101 (2017)

    Article  Google Scholar 

  23. Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)

    Article  Google Scholar 

  24. Hashin, Z., Shtrikman, S.: Conductivity of polycrystals. Phys. Rev. 130, 129–133 (1963)

    Article  MATH  Google Scholar 

  25. Schulgasser, K.: Bounds on the conductivity of statistically isotropic polycrystals. J. Phys. C 10, 407 (1977)

    Article  Google Scholar 

  26. Lurie, K.A., Cherkaev, A.V.: G-closure of some particular sets of admissible material characteristics for the problem of bending of thin elastic plates. J. Optim. Theory Appl. 42(2), 305–316 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Avellaneda, M., Cherkaev, A.V., Lurie, K.A., Milton, G.W.: On the effective conductivity of polycrystals and a three-dimensional phase interchange inequality. J. Appl. Phys. 63, 4989 (1988)

    Article  Google Scholar 

  28. Clark, K.E.: A continued fraction representation for the effective conductivity of a two-dimensional polycrystal. J. Math. Phys. 38, 4528 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Barabash, S., Stroud, D.: Spectral representation for the effective macroscopic response of a polycrystal: application to third-order non-linear susceptibility. J. Phys. Condens. Matter 11, 10323 (1999)

    Article  Google Scholar 

  30. Gully, A., Lin, J., Cherkaev, E., Golden, K.M.: Bounds on the complex permittivity of polycrystalline materials by analytic continuation. Proc. R. Soc. A 471, 20140702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  33. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  34. Cherkaev, A.: Variational Methods for Structural Optimization. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  35. Lurie, K.A.: An Introduction to the Mathematical Theory of Dynamic Materials. Springer, Berlin (2007)

    MATH  Google Scholar 

  36. Bergman, D.J.: The dielectric constant of a composite material: a problem in classical physics. Phys. Rep. C43, 377–407 (1978)

    Article  MathSciNet  Google Scholar 

  37. Milton, G.W.: Theoretical Studies of the Transport Properties of Inhomogeneous Media. Research Project Report. University of Sydney, Sydney (1979)

    Google Scholar 

  38. Golden, K., Papanicolaou, G.: Bounds for the effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys. 90, 473–491 (1983)

    Article  MathSciNet  Google Scholar 

  39. Cherkaev, E.: Inverse homogenization for evaluation of effective properties of a mixture. Inverse Probl. 17, 1203–1218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. McPhedran, R.C., McKenzie, D.R., Milton, G.W.: Extraction of structural information from measured transport properties of composites. Appl. Phys. A 29, 19–27 (1982)

    Article  Google Scholar 

  41. Bonifasi-Lista, C., Cherkaev, E.: Analytical relations between effective material properties and microporosity: application to bone mechanics. Int. J. Eng. Sci. 46, 1239–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cherkaev, E., Bonifasi-Lista, C.: Characterization of structure and properties of bone by spectral measure method. J. Biomech. 44(2), 345–351 (2011)

    Article  MATH  Google Scholar 

  43. Kantor, Y., Bergman, D.J.: Elastostatic resonances: a new approach to the calculation of the effective elastic constant of composites. J. Mech. Phys. Solids 30, 335–376 (1982)

    Article  MATH  Google Scholar 

  44. Kantor, Y., Bergman, D.J.: Improved rigorous bounds on the effective elastic moduli of a composite material. J. Mech. Phys. Solids 32, 41–62 (1984)

    Article  MATH  Google Scholar 

  45. Berdichevsky, V.L.: Heat conduction of checker-board structures. Mosc. Univ. Mech. Bull. 40, 15–25 (1985)

    Google Scholar 

  46. Bruno, O.P., Leo, P.H.: On the stiffness of materials containing a disordered array of microscopic holes or hard inclusions. Arch. Ration. Mech. Anal. 121, 303–338 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Milton, G.W.: Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  48. Ou, M.J., Cherkaev, E.: On the integral representation formula for a two-component elastic composite. Math. Methods Appl. Sci. 29, 655–664 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ou, M.J.: Two-parameter integral representation formula for the effective elastic moduli of two-phase composites. Complex Var. Elliptic Equ. 57, 411–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tokarzewski, S., Telega, J.J., Galka, A.: Torsional rigidities of cancellous bone filled with marrow: the application of multipoint Pade approximants. Eng. Trans. 49, 135–153 (2001)

    MATH  Google Scholar 

  51. Bonifasi-Lista, C., Cherkaev, E.: Identification of bone microstructure from effective complex modulus. In: Inan, E., Kiris, A. (eds.) Vibration Problems ICOVP 2005, Proceedings in Physics, vol. 111, pp. 91–96. Springer (2005)

  52. Bonifasi-Lista, C., Cherkaev, E., Yeni, Y.N.: Analytical approach to recovering bone porosity from effective complex shear modulus. J. Biomech. Eng. 131, 121003-1–121003-8 (2009)

    Article  Google Scholar 

  53. Baker Jr., G.A., Graves-Morris, P.: Pade Approximations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  54. Zhang, D., Cherkaev, E.: Reconstruction of spectral function from effective permittivity of a composite material using rational function approximations. J. Comput. Phys. 228, 5390–5409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lurie, K.A., Cherkaev, A.V., Fedorov, A.V.: Regularization of optimal design problems for bars and plates, I, II, J. Optim. Theory Appl. 37(4), 499–522, 523–543 (1982)

  56. Avellaneda, M., Cherkaev, A.V., Gibiansky, L.V., Milton, G.W., Rudelson, M.: A complete characterization of the possible bulk and shear moduli of planar polycrystals. J. Mech. Phys. Solids 44(7), 1179–1218 (1996)

    Article  Google Scholar 

  57. Akhiezer, N.I.: The Classical Moment Problem. Oliver & Boyd, Edinburgh (1965)

    MATH  Google Scholar 

  58. Stone, M.H.: Linear Transformations in Hilbert Space. American Mathematical Society, Providence (1964)

    Google Scholar 

  59. Duran, A.: Markov’s theorem for orthogonal matrix polynomials. Can. J. Math. 48(6), 1180–1195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, D., Lamoureux, M., Margarve, G., Cherkaev, E.: Rational approximation for estimation of quality Q factor and phase velocity in linear, viscoelastic, isotropic media. Comput. Geosci. 15(1), 117–133 (2011)

    Article  MATH  Google Scholar 

  61. Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam (2007)

    Google Scholar 

  62. Day, S.M., Minster, J.B.: Numerical simulation of attenuated wavefields using a Pade approximant method. Geophys. J. R. Astron. Soc. 78, 105–118 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Cherkaev.

Additional information

This paper is dedicated to my longtime colleague and dear friend Prof. Konstantin Lurie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the US National Science Foundation through Grants DMS-0940249 and DMS-1413454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkaev, E. Internal friction and the Stieltjes analytic representation of the effective properties of two-dimensional viscoelastic composites. Arch Appl Mech 89, 591–607 (2019). https://doi.org/10.1007/s00419-019-01514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01514-3

Keywords

Navigation