Archive of Applied Mechanics

, Volume 89, Issue 4, pp 769–788 | Cite as

Chemo-mechanical coupling analysis of composites by second-order multiscale asymptotic expansion

  • Zhiqiang YangEmail author
  • Tianyu Guan
  • Yi Sun


A novel second-order multiscale asymptotic expansion is developed in this work to analyze chemo-mechanical properties of composites with periodic microstructure. The chemo-mechanical coupling model which considers mutual interaction between the displacement and concentration fields of composites is introduced at first. Then, the second-order multiscale formulas based on homogenization methods and multiscale asymptotic expansion for evaluating the chemo-mechanical coupling problems are proposed, including the microscale cell functions, homogenized coefficients and homogenized equations. Further, the related numerical algorithms on the basis of the proposed multiscale models are brought forward. Finally, by some representative examples, the efficiency and accuracy of the presented algorithms are verified. The numerical results clearly illustrate that the second-order multiscale methods proposed in this work are effective and valid to predict the chemo-mechanical coupling properties, and can capture the microscale behavior of the composites accurately.


Second-order multiscale algorithms Chemo-mechanical analysis Homogenization Periodic composites 



This work is supported by the Fundamental Research Funds for the Central Universities, and also the National Natural Science Foundation of China (11701123).


  1. 1.
    Baughman, R.H.: Conducting polymer artificial muscles. Synth. Met. 78, 339–353 (1996)CrossRefGoogle Scholar
  2. 2.
    Garard, M., Chaubey, A., Malhotra, B.D.: Application of conducting polymers to biosensors. Biosens. Bioelectron. 17(5), 345–359 (2002)CrossRefGoogle Scholar
  3. 3.
    Yu, P.F., Shen, S.: A fully coupled theory and variational principle for thermal-electrical-chemical-mechanical processes. ASME J. Appl. Mech. 81, 111005 (2014)CrossRefGoogle Scholar
  4. 4.
    Haftbaradaran, H., Qu, J.M.: Two-dimensional chemo-elasticity under chemical equilibrium. Int. J. Solids Struct. 56–57, 126–135 (2015)CrossRefGoogle Scholar
  5. 5.
    Zhao, X.J., Bordas, S.P.A., Qu, J.: Equilibrium morphology of misfit particles in elastically stressed solids under chemo-mechanical equilibrium conditions. J. Mech. Phys. Solids 81, 1–21 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rambert, G., Grandidier, J.-C., Aifantis, E.C.: On the direct interactions between heat transfer, mass transport and chemical processes within gradient elasticity. Eur. J. Mech. A Solids 26(1), 68–87 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Suo, Y., Shen, S.: General approach on chemistry and stress coupling effects during oxidation. J. Appl. Phys. 114(16), 164905 (2013)CrossRefGoogle Scholar
  8. 8.
    Hu, S.L., Shen, S.: Non-equilibrium thermodynamics and variational principles for fully coupled thermal mechanical chemical processes. Acta Mech. 224, 2895–2910 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dong, X., Feng, X., Hwang, K.-C.: Oxidation stress evolution and relaxation of oxide film/metal substrate system. J. Appl. Phys. 112(2), 023502 (2012)CrossRefGoogle Scholar
  10. 10.
    Dong, X., Fang, X., Feng, X., Hwang, K.C.: Diffusion and stress coupling effect during oxidation at high temperature. J. Am. Ceram. Soc. 96(1), 44–46 (2013)CrossRefGoogle Scholar
  11. 11.
    Yang, Q.S., Qin, Q.-H., Ma, L.-H., Lu, X.-Z., Cui, C.-Q.: A theoretical model and finite element formulation for coupled thermo-electro-chemo-mechanical media. Mech. Mater. 42, 148–156 (2010)CrossRefGoogle Scholar
  12. 12.
    Larché, F., Cahn, J.: A linear theory of thermochemical equilibrium of solids under stress. Acta Metall. 21, 1051–1063 (1973)CrossRefGoogle Scholar
  13. 13.
    Wu, C.H.: The role of Eshelby stress in composition-generated and stress-assisted diffusion. J. Mech. Phys. Solids 49, 1771–1794 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium-ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Anand, L.: A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60, 1983–2002 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gao, X., Fang, D.N., Qu, J.M.: A chemo-mechanics framework for elastic solids with surface stress. Proc. R. Soc. A 471, 20150366 (2015)CrossRefGoogle Scholar
  17. 17.
    Sun, Y., Cao, M.X., Yang, Z.Q.: Mechanical behavior of cracked solid electrolyte under the coupled mechanical and chemical fields. Chin. J. Comput. Mech. 34(5), 657–664 (2017)Google Scholar
  18. 18.
    Moyne, C., Murad, M.A.: Electro-chemo-mechanical coupling in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39, 6159–6190 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Loret, B., Hueckel, T., Gajo, A.: Chemo-mechanical coupling in saturated porous media: elasto-plastic behavior of homoionic expansive clays. Int. J. Solids Struct. 39, 2773–2806 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gajo, A., Loret, B.: Finite element simulations of chemo-mechanical coupling in elastic-plastic homoionic expansive clays. Comput. Methods Appl. Mech. Eng. 192, 3489–3530 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zohdi, T.I.: Modeling and simulation of a class of coupled thermochemo-mechanical processes in multiphase solids. Comput. Methods Appl. Mech. Eng. 193, 679–699 (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    De Sudipto, K., Aluru, N.R.: A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech. Mater. 36, 395–410 (2004)CrossRefGoogle Scholar
  23. 23.
    Wallmersperger, T., Kroplin, B., Gulch, R.: Coupled chemo-electromechanical formulation for ionic polymer gels numerical and experimental investigations. Mech. Mater. 36, 411–420 (2004)CrossRefGoogle Scholar
  24. 24.
    Yang, Z.H., Cui, J.Z.: The statistical second-order two-scale analysis for dynamic thermo-mechanical performances of the composite structure with consistent random distribution of particles. Comput. Mater. Sci. 69, 359–373 (2013)CrossRefGoogle Scholar
  25. 25.
    Yang, Z.Q., Cui, J.Z., Sun, Y., Liang, J., Yang, Z.H.: Multiscale analysis method for thermo-mechanical performance of periodic porous materials with interior surface radiation. Int. J. Numer. Methods Eng. 105(5), 323–350 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, W.H., Zhang, S., Bi, J., Schrefler, B.: Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int. J. Numer. Methods Eng. 69, 87–113 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yu, W.B., Tang, T.: A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials. Int. J. Solids Struct. 44, 7510–7525 (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Yu, Q., Fish, J.: Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int. J. Solids Struct. 39, 6429–6452 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sixto-Camacho, L.M., Bravo-Castillero, J., Brenner, R., Guivonart-Diaz, R., Mechkour, H., Rodriguez-Ramos, R., Sabina, F.J.: Asymptotic homogenization of periodic thermo-magneto-electro-elastic heterogeneous media. Comput. Math. Appl. 66, 2056–2074 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structure. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  31. 31.
    Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992)zbMATHGoogle Scholar
  32. 32.
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21(5), 571–574 (1973)CrossRefGoogle Scholar
  33. 33.
    Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Chou, T.W., Nomura, S., Taya, M.: A self-consistent approach to the elastic stiffness of short-fibre composites. J. Compos. Mater. 14, 178–188 (1980)CrossRefGoogle Scholar
  35. 35.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)CrossRefzbMATHGoogle Scholar
  36. 36.
    Terada, K., Kurumatani, M., Ushida, T., Kikuchi, N.: A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput. Mech. 46(2), 269–285 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, H.W., Liu, Y., Zhang, S., Tao, J., Wu, J.K., Chen, B.S.: Extended multiscale finite element method: its basis and applications for mechanical analysis of heterogeneous materials. Comput. Mech. 53, 659–685 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wu, Y.T., Nie, Y.F., Yang, Z.H.: Prediction of effective properties for random heterogeneous materials with extrapolation. Arch. Appl. Mech. 84(2), 247–261 (2014)CrossRefzbMATHGoogle Scholar
  40. 40.
    Han, F., Cui, J.Z., Yu, Y.: The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials. Int. J. Numer. Methods Eng. 84, 972–988 (2010)CrossRefzbMATHGoogle Scholar
  41. 41.
    Guan, X.F., Liu, X., Jia, X., Yuan, Y., Cui, J.Z., Mang, H.A.: A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete. Int. J. Solids Struct. 56–57, 280–289 (2015)CrossRefGoogle Scholar
  42. 42.
    Yang, Z.Q., Sun, Y., Cui, J.Z., Li, X.: A multiscale algorithm for heat conduction-radiation problems in porous materials with quasi-periodic structures. Commun. Comput. Phys. 24, 204–233 (2018)MathSciNetGoogle Scholar
  43. 43.
    Zhang, L., Cao, L.Q., Wang, X.: Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials. Comput. Methods Appl. Mech. Eng. 198, 2539–2554 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Bourgat, J.F.: Numerical experiments of the homogenization method for operators with periodic coefficients. In: Proceedings of Third International Symposium on Computing Methods in Applied Sciences and Engineering, Lecture Notes in Mathematics (Versailles, 1977), vol. 704, pp. 330–356, Springer, Berlin, (1979)Google Scholar
  45. 45.
    Allaire, G., Habibi, Z.: Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discret Contin. Dyn. B 18(1), 1–36 (2013)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Sofronis, P., McMeeking, R.M.: Numerical analysis of hydrogen transport near a blunting crack tip. J. Mech. Phys. Solids 37(3), 317–350 (1989)CrossRefGoogle Scholar
  47. 47.
    Matthies, H.G., Niekamp, R., Steindorf, J.: Algorithms for strong coupling procedures. Comput. Methods Appl. Mech. Eng. 195, 2028–2049 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Cui, J.Z.: The two-scale expression of the solution for the structure with several sub-domains of small periodic configurations. In: Invited Presentation on “Workshop on Scientific Computing 99”, Hong Kong, (1996)Google Scholar
  49. 49.
    Benjamin, A.Y., Amanda, M.K.F., Alexander, M.T., Aditya, K., Gaurav, S., Ertugrul, T., Laurent, P.: Effective elastic moduli of core-shell-matrix composites. Mech. Mater. 92, 94–106 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Astronautic Science and MechanicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations