Archive of Applied Mechanics

, Volume 89, Issue 4, pp 755–768 | Cite as

A modified uncoupled lower-order theory for FG beams

  • Y. L. Pei
  • P. S. Geng
  • L. X. LiEmail author


Though the higher-order beam theory is variationally consistent, the lower-order beam theory has more definite engineering significance in practical applications. This paper begins with the modified uncoupled higher-order theory of functionally graded (FG) beams. After evaluating the three rigidity coefficients, contribution of the two higher-order generalized stresses to the virtual work is ignored and therefore a modified uncoupled lower-order theory is established for FG beams, including the basic equations and the shear correction factor, so that the lower-order beam theory is theoretically correlated with the high-order beam theory. The cases of pure shearing, pure bending and pure tension are solved, compared and discussed for a FG beam. The analytical solutions validate the accuracy and applicability of the present uncoupled lower-order theory.


FG beam Rigidity coefficients The principle of virtual work Uncoupled higher-order beam theory Uncoupled lower-order beam theory 



This work was supported by the National Natural Science Foundations of China (Grant Nos. 11672221, 11272245, 11321062).


  1. 1.
    Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–99 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Abanto-Bueno, J., Lambros, J.: Parameters controlling fracture resistance in functionally graded materials under mode I loading. Int. J. Solids Struct. 43(13), 3920–39 (2006)CrossRefGoogle Scholar
  3. 3.
    Adámek, V., Valeš, F.: Analytical solution for a heterogeneous Timoshenko beam subjected to an arbitrary dynamic transverse load. Eur. J. Mech. A/Solids 49, 373–81 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Wetherhold, R.C., Seelman, S., Wang, J.: The use of functionally graded materials to eliminate or control thermal deformation. Compos. Sci. Technol. 56(9), 1099–104 (1996)CrossRefGoogle Scholar
  5. 5.
    Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–96 (2001)CrossRefGoogle Scholar
  6. 6.
    Do, V.N.V., Thai, C.H.: A modified Kirchhoff plate theory for analyzing thermo-mechanical static and buckling responses of functionally graded material plates. Thin-Walled Struct. 117, 113–26 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 318(4), 1210–29 (2008)CrossRefGoogle Scholar
  8. 8.
    Timoshenko, P.S.P.: LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 7(245), 239–50 (1921)Google Scholar
  9. 9.
    Nguyen, T.K., Vo, T.P., Thai, H.T.: Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Compos. Part B Eng. 55(55), 147–57 (2013)CrossRefGoogle Scholar
  10. 10.
    Wattanasakulpong, N., Mao, Q.: Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Compos. Struct. 119(119), 346–54 (2015)CrossRefGoogle Scholar
  11. 11.
    Nguyen, T.K., Bonnet, K.S., Shear, G.: Correction factors for functionally graded plates. Mech. Adv. Mater. Struct. 14(8), 567–75 (2007)CrossRefGoogle Scholar
  12. 12.
    Vu, T.-V., Nguyen, N.-H., Khosravifard, A., Hematiyan, M.R., Tanaka, S., Bui, T.Q.: A simple FSDT-based meshfree method for analysis of functionally graded plates. Eng. Anal. Bound. Elem. 79, 1–12 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sharma, P., Parashar, S.K.: Free vibration analysis of shear-induced flexural vibration of FGPM annular plate using generalized differential quadrature method. Compos. Struct. 155(2), 213–22 (2016)CrossRefGoogle Scholar
  14. 14.
    Eftekhar, H., Zeynali, H., Nasihatgozar, M.: Electro-magneto temperature-dependent vibration analysis of functionally graded-carbon nanotube-reinforced piezoelectric Mindlin cylindrical shells resting on a temperature-dependent, orthotropic elastic medium. Mech. Adv. Mater. Struct. 25, 1–14 (2018)CrossRefGoogle Scholar
  15. 15.
    Jing, L., Ming, P.-J., Zhang, W.-P., Fu, L.-R., Cao, Y.-P.: Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method. Compos. Struct. 138, 192–213 (2016)CrossRefGoogle Scholar
  16. 16.
    Benatta, M.A., Tounsi, A., Mechab, I., Bouiadjra, M.B.: Mathematical solution for bending of short hybrid composite beams with variable fibers spacing. Appl. Math. Comput. 212(2), 337–48 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Frikha, A., Hajlaoui, A., Wali, M., Dammak, F.: A new higher order C0 mixed beam element for FGM beams analysis. Compos. Part B: Eng. 106, 181–9 (2016)CrossRefGoogle Scholar
  18. 18.
    Dong, S.B., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timoshenko beam theory. Int. J. Solids Struct. 47(13), 1651–65 (2010)zbMATHCrossRefGoogle Scholar
  19. 19.
    Romano, G., Barretta, A., Barretta, R.: On torsion and shear of Saint-Venant beams. Eur. J. Mech. 35(6), 47–60 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Faghidian, S.A.: Unified formulations of the shear coefficients in Timoshenko beam theory. ASCE J. Eng. Mech. 143(9), 06017013 (2017)CrossRefGoogle Scholar
  21. 21.
    Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–52 (1984)zbMATHCrossRefGoogle Scholar
  22. 22.
    Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–84 (2000)zbMATHCrossRefGoogle Scholar
  23. 23.
    Touratier, M.: An efficient standard plate-theory. Int. J. Eng. Sci. 29(8), 901–16 (1991)zbMATHCrossRefGoogle Scholar
  24. 24.
    Soldatos, K.P.: A transverse-shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3–4), 195–220 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89(1), 94–101 (2009)CrossRefGoogle Scholar
  26. 26.
    Karama, M., Afaq, K., Mistou, S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–46 (2003)zbMATHCrossRefGoogle Scholar
  27. 27.
    Soldatos, K., Timarci, T.: A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories. Compos. Struct. 25(1–4), 165–71 (1993)CrossRefGoogle Scholar
  28. 28.
    Aydogdu, M., Taskin, V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28(5), 1651–6 (2007)CrossRefGoogle Scholar
  29. 29.
    Mechab, I., Tounsi, A., Benatta, M.A., Bedia, E.A.A.: Deformation of short composite beam using refined theories. J. Math. Anal. Appl. 346(2), 468–79 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M., El Abbas, A.B.: A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams. Comput. Mater. Sci. 44(4), 1344–50 (2009)CrossRefGoogle Scholar
  31. 31.
    Şimşek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)CrossRefGoogle Scholar
  32. 32.
    Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52(3), 56–64 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Wali, M., Hajlaoui, A., Dammak, F.: Discrete double directors shell element for the functionally graded material shell structures analysis. Comput. Methods Appl. Mech. Eng. 278, 388–403 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128(3), 70–86 (2015)CrossRefGoogle Scholar
  35. 35.
    Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H., Bui, T.Q.: Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. Thin-Walled Struct. 119, 687–99 (2017)CrossRefGoogle Scholar
  36. 36.
    Srividhya, S., Raghu, P., Rajagopal, A., Reddy, J.N.: Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory. Int. J. Eng. Sci. 125, 1–22 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Khorasani, V.S., Bayat, M.: Bending analysis of FG plates using a general third-order plate theory with modified couple stress effect and MLPG method. Eng. Anal. Bound. Elem. 94, 159–71 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Morimoto, T., Tanigawa, Y., Kawamura, R.: Thermal buckling of functionally graded rectangular plates subjected to partial heating. Int. J. Mech. Sci. 48(9), 926–37 (2006)zbMATHCrossRefGoogle Scholar
  39. 39.
    Abrate, S.: Functionally graded plates behave like homogeneous plates. Compos. Part B: Eng. 39, 151–8 (2008)CrossRefGoogle Scholar
  40. 40.
    Zhang, D.G., Zhou, Y.H.: A theoretical analysis of FGM thin plates based on physical neutral surface. Comput. Mater. Sci. 44(2), 716–20 (2008)CrossRefGoogle Scholar
  41. 41.
    Zhang, D.G.: Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory. Int. J. Mech. Sci. 68(7), 92–104 (2013)CrossRefGoogle Scholar
  42. 42.
    Levinson, M.: A new rectangular beam theory. J. Sound Vib. 74(1), 81–7 (1981)zbMATHCrossRefGoogle Scholar
  43. 43.
    Murthy, M.V.V.: An improved transverse shear deformation theory for laminated anisotropic plates. NASA Technical Paper, 1–39 (1981)Google Scholar
  44. 44.
    Duan, T.C., Li, L.X.: Study on higher-order shear deformation theories of thick-plate. Chin. J. Theor. Appl. Mech. 48(5), 1096–113 (2016)Google Scholar
  45. 45.
    Pei, Y.L., Geng, P.S., Li, L.X.: A modified higher-order theory for FG beams. Eur. J. Mech. A/Solids 134, 186–97 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Huang, Y., Wu, J.X., Li, X.F., Yang, L.E.: Higher-order theory for bending and vibration of beams with circular cross section. J. Eng. Math. 80(1), 91–104 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mech. 225(7), 2075–83 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Barretta, R., Feo, L., Luciano, R., Sciarra, F.M.D., Penna, R.: Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation. Compos. Part B: Eng. 100, 208–19 (2016)CrossRefGoogle Scholar
  49. 49.
    Barretta, R.: On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint–Venant beam theory. Int. J. Solids Struct. 49(21), 3038–46 (2012)CrossRefGoogle Scholar
  50. 50.
    Barretta, R.: On Cesàro–Volterra method in orthotropic Saint–Venant beam. J. Elast. 112(2), 233–53 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Thai, H.T., Vo, T.P.: Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int. J. Mech. Sci. 62(1), 57–66 (2012)CrossRefGoogle Scholar
  52. 52.
    Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W.: Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int. J. Mech. Sci. 53(9), 734–43 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations