Archive of Applied Mechanics

, Volume 89, Issue 4, pp 713–729 | Cite as

Nonlinear static isogeometric analysis of cable structures

  • Damir SedlarEmail author
  • Zeljan Lozina
  • Andjela Bartulovic


The purpose of this paper is to develop and evaluate the efficiency of the cable element based on the Lagrangian formulation using the Isogeometric analysis (IGA) approach. Two Lagrangian formulations (Total Lagrangian and Updated Lagrangian) have been adopted in the static analysis of nonlinear behaviour of the cable structures. The same basis functions are used to represent the geometry of the cable as well as the cable displacement field. These two formulations are tested on benchmark examples and compared to each other and to the existing analysis methods. The influence of a different number of elements, the order of polynomials and the number of numerical integration points was examined. Compared to the other method, the obtained results in benchmark examples indicate the capability and accuracy of the presented approach. This paper demonstrates successful IGA implementation of the Lagrangian formulation for the nonlinear analysis of cable structures.


Cable element Lagrangian formulation Nonlinear isogeometric analysis Static analysis 



This paper is supported by the Croatian science foundation Project Number IP-2014-09-6130.


  1. 1.
    Abad, S.S.A., Shooshtari, A., Esmaeili, V., Riabi, A.N.: Nonlinear analysis of cable structures under general loadings. Finite Elem. Anal. Des. 73, 11–19 (2013). CrossRefGoogle Scholar
  2. 2.
    Bathe, K.: Finite Element Procedures, 2nd edn. Klaus-Jurgen Bathe, Berlin (2014)zbMATHGoogle Scholar
  3. 3.
    Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Engrg. 199(5–8), 276–289 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cazzani, A., Malagu, M.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Z.H., Wu, Y.J., Yin, Y., Shan, C.: Formulation and application of multi-node sliding cable element for the analysis of suspen-dome structures. Finite Elem. Anal. Des. 46, 743–750 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chunjiang, W., Renpeng, W., Shilin, D., Ruojun, Q.: A new catenary cable element. Int. J. Space Struct. 18(4), 269–275 (2003)CrossRefGoogle Scholar
  7. 7.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Wiley, Hoboken (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Coyette, J., Guisset, P.: Cable network analysis by a nonlinear programming technique. Eng. Struct. 10(1), 41–46 (1988)CrossRefGoogle Scholar
  9. 9.
    Gambhir, M., Batchelor, B.: Finite element study of the free vibration of 3-d cable networks. Int. J. Solids Struct. 15, 127–136 (1979)CrossRefzbMATHGoogle Scholar
  10. 10.
    Greco, L., Cuomo, M.: B-spline interpolation of kirchhoff-love space rods. Comput. Methods Appl. Mech. Engrg. 256, 251–269 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harada, K., Zhang, J., Ogawa, T.: Self-equilibrium Analysis of Cable Structures Based on Isogeometric Analysis, vol. ICCM2014, pp. 128–135. Cambridge, England (2014)Google Scholar
  12. 12.
    Huynh, T.-A., Luu, A.-T., Lee, J.: Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach. Meccanica 52, 1–20 (2017). MathSciNetCrossRefGoogle Scholar
  13. 13.
    Impollonia, N., Ricciardi, G., Saitta, F.: Statics of elastic cables under 3d point forces. International Journal of Solids and Structures 48(9), 1268–1276 (2011). URL
  14. 14.
    Jayaraman, H., Knudson, W.: A curved element for the analysis of cable structures. Comput. Struct. 14(3–4), 325–333 (1981)CrossRefGoogle Scholar
  15. 15.
    Kiendl, J., Bletzinger, K.U., Linhard, J., Wuchner, R.: Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    O’Brien, W., Francis, A.: Cable movements under two-dimensional loads. J. Struct. Div. ASCE 90, 89–124 (1964)Google Scholar
  17. 17.
    Ozdemir, H.: A finite element approach for cable problems. Int. J. Solids Struct. 15, 427–437 (1979)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pevrot, A., Goulois, A.: Analysis of cable structures. Comput. Struct. 10, 805–813 (1979)CrossRefGoogle Scholar
  19. 19.
    Philipp, B., Breitenberger, M., DAuria, I., Wuchnera, R., Bletzinger, K.-U.: Integrated design and analysis of structural membranes using the isogeometric b-rep analysis. Comput. Methods Appl. Mech. Engrg. 303, 312–340 (2016). MathSciNetCrossRefGoogle Scholar
  20. 20.
    Raknes, S., Deng, X., Bazilevs, Y., Benson, D., Mathisen, K., Kvamsdal, T.: Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput. Methods Appl. Mech. Eng. 263, 127–143 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Such, M., Jimenez-Octavio, J.R., Carnicero, A., Lopez-Garcia, O.: An approach based on the catenary equation to deal with static analysis of three dimensional cable structures. Eng. Struct. 31(9), 2162–2170 (2009). URL
  22. 22.
    Thai, S., Kim, N.I., Lee, J.: Free vibration analysis of cable structures using isogeometric approach. Int. J. Comput. Methods 14(2), 1750033–1–26, (2017).
  23. 23.
    Thai, S., Kim, N.-I., Lee, J.: Isogeometric cable elements based on b-spline curves. Meccanica 52(4), 1219–1237 (2017b). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tran, L.V., Thai, C.H., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)CrossRefGoogle Scholar
  25. 25.
    Uhm, T.K., Youn, S.K.: T-spline finite element method for the analysis of shell structures. Int. J. Numer. Methods Eng. 80(4), 507–536 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yang, Y., Tsay, J.: Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method. Int. J. Struct. Stab. Dyn. 7(4), 571–588 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Damir Sedlar
    • 1
    Email author
  • Zeljan Lozina
    • 1
  • Andjela Bartulovic
    • 1
  1. 1.University of SplitFaculty of Electrical Engineering, Mechanical Engineering and Naval ArchitectureSplitCroatia

Personalised recommendations