Archive of Applied Mechanics

, Volume 89, Issue 4, pp 699–711

# Hybrid uncertain analysis for random convex response of structures with a mixture of random and convex properties

• Yongwei Han
• Zhaopu Guo
• Zhongmin Deng
Original

## Abstract

This paper presents a new numerical algorithm named hybrid Neumann Lagrange method for static analysis of structural systems with a mixture of random and convex variables. The random variables are used to treat the uncertain parameters with sufficient statistical information, whereas the convex variables are used to describe the uncertain parameters with limited information. The expressions for expectation and variance of random convex structural displacements are developed based on the Neumann series theory. Then the first-order Taylor series and the Lagrange multiplier method are employed to determine the upper and lower bounds of these probabilistic characters of the structural responses. By comparing with the results of Monte Carlo simulation, numerical examples are given to verify the effectiveness of the proposed method.

## Keywords

Random convex responses Random variables Convex variables Neumann series Lagrange multiplier method

## Notes

### Acknowledgements

This research was supported by the National Natural Science Foundation of China (11772018).

## References

1. 1.
Moens, D., Vandepitte, D.: A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods Appl. Eng. 194(12), 1527–1555 (2005)
2. 2.
Feng, Y.T., Li, C.F., Owen, D.R.J.: A direct Monte Carlo solution of linear stochastic algebraic system of equations. Finite Elem. Anal. Des. 46(6), 462–473 (2010)
3. 3.
Kamiński, M., Lauke, B.: Uncertainty in effective elastic properties of particle filled polymers by the Monte Carlo simulation. Compos. Struct. 123, 374–382 (2015)
4. 4.
Jablonka, A.: Stochastic sensitivity analysis for structural dynamics systems via the second-order perturbation. Arch. Appl. Mech. 86, 1913–1926 (2016)
5. 5.
Füssl, J., Kandler, G., Eberhardsteiner, J.: Application of stochastic finite element approaches to wood-based products. Arch. Appl. Mech. 86, 89–110 (2016)
6. 6.
Ngah, M.F., Young, A.: Application of the spectral stochastic finite element method for performance prediction of composite structures. Compos. Struct. 78(3), 447–456 (2007)
7. 7.
Zakian, P., Khaji, N.: A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica 51(4), 893–920 (2016)
8. 8.
Gao, W., Zhang, N., Ji, J.C.: A new method for random vibration analysis of stochastic truss structures. Finite Elem. Anal. Des. 45(3), 190–199 (2009)
9. 9.
Deng, Z.M., Guo, Z.P., Zhang, X.J.: Interval model updating using perturbation method and Radial Basis Function neural networks. Mech. Syst. Signal Process. 84, 699–716 (2017)
10. 10.
Degrauwe, D., Lombaert, G., Roeck, G.D.: Improving interval analysis in finite element calculations by means of affine arithmetic. Comput. Struct. 88(3–4), 247–254 (2010)
11. 11.
Moore, R.E.: Methods and Applications of Interval Analysis. Prentice-Hall, London (1979)
12. 12.
Rao, S.S., Berke, L.: Analysis of uncertain structural systems using interval analysis. AIAA J. 35, 727–735 (1997)
13. 13.
Qiu, Z.P., Chen, S.H., Song, D.: The displacement bound estimation for structures with an interval description of uncertain parameters. Commun. Numer. Methods Eng. 12, 1–11 (1997)
14. 14.
Jiang, C., Zhang, Q.F., Han, X., Qian, Y.H.: A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model. Acta Mech. 225(2), 383–395 (2014)
15. 15.
Ben-Haim, Y., Elishakoff, I.: Convex Models of Uncertainties in Applied Mechanics. Elsevier, Amsterdam (1990)
16. 16.
Ben-Haim, Y.: Convex models of uncertainty in radial pulse buckling of shells. J. Appl. Mech. 60(3), 683–688 (1993)
17. 17.
Elishakoff, I., Elisseeff, P.: Non-probabilistic convex-theoretic modeling of scatter in material properties. AIAA J. 32, 843–849 (1994)
18. 18.
Xia, B.Z., Yu, D.J.: Response analysis of acoustic field with convex parameters. J. Vib. Acoust. 136(4), 041017 (2014)
19. 19.
Deng, Z.M., Guo, Z.P., Zhang, X.J.: Non-probabilistic set-theoretic models for transient heat conduction of thermal protection systems with uncertain parameters. Appl. Therm. Eng. 95, 10–17 (2016)
20. 20.
Oberkampf, W.L., Helton, J.C., Joslyn, C.A., et al.: Challenge problems: uncertainty in system response given uncertain parameters. Reliab. Eng. Syst. Saf. 85(1–3), 11–19 (2005)Google Scholar
21. 21.
Gao, W., Song, C.M., Tin-Loi, F.: Probabilistic interval analysis for structures with uncertainty. Struct. Saf. 32(3), 191–199 (2010)
22. 22.
Gao, W., Wu, D., Song, C.M., Tin-Loi, F., Li, X.J.: Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47(7), 643–652 (2011)
23. 23.
Xia, B.Z., Yu, D.J., Liu, J.: Hybrid uncertain analysis for structural-acoustic problem with random and interval parameters. J. Sound Vib. 332(11), 2701–2720 (2013)
24. 24.
Wang, C., Qiu, Z.P.: Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters. Int. J. Heat Mass Transf. 80, 319–328 (2015)
25. 25.
Penmetsa, R.C., Grandhi, R.V.: Efficient estimation of structural reliability for problems with uncertain intervals. Comput. Struct. 80(12), 1103–1112 (2002)
26. 26.
Adduri, P.R., Penmetsa, R.C.: Systems reliability analysis for mixed uncertain variables. Struct. Saf. 227(7), 1441–1453 (2009)Google Scholar
27. 27.
Karanki, D.R., Kushwaha, H.S., Verma, K.A., Ajit, S.: Uncertainty analysis based on probability bounds (p-box) approach in probabilistic safety assessment. Risk Anal. 29(5), 662–675 (2009)
28. 28.
Luo, Y., Kang, Z., Li, A.: Structural reliability assessment based on probability and convex set mixed model. Comput. Struct. 87(21–22), 1408–1415 (2009)