Skip to main content
Log in

Prediction of fatigue life under multiaxial loading by using a critical plane-based model

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the critical plane concept, a simple model is proposed to estimate fatigue lives of metals subjected to both proportional and non-proportional loadings. In the proposed model, both parameters of shear and normal strain ranges are considered in the equivalent strain which is made with both parameters by means of the von Mises criterion. The maximum normal stress acting on the maximum shear strain range plane is introduced in the proposed model to take into account the effects of non-proportional hardening. Procedures used to determine the damage parameters acting on the plane of maximum shear strain range are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karolczuk, A., Macha, E.: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 134, 267–304 (2005)

    Article  MATH  Google Scholar 

  2. Fatemi, A., Shamsaei, N.: Multiaxial fatigue: an overview and some approximation models for life estimation. Int. J. Fatigue 33, 948–958 (2011)

    Article  Google Scholar 

  3. Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M., Spigarelli, S.: A review on fatigue life prediction methods for metals. Adv. Mater. Sci. Eng. 2016, 1–26 (2016)

    Article  Google Scholar 

  4. Carpinteri, A., Spagnoli, A., Vantadori, S.: A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue Fract. Eng. Mater. Struct. 40, 1007–1036 (2017)

    Article  Google Scholar 

  5. Kandil, F.A., Brown, M.W., Miller, K.J.: Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures. In: Book 280, pp. 203–210. The Metals Society, London (1982)

  6. Wang, C.H., Brown, M.W.: A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 16, 1285–1298 (1993)

    Article  Google Scholar 

  7. Shang, D.G., Wang, D.J.: A new multiaxial fatigue damage model based on the critical plane approach. Int. J. Fatigue 20, 241–245 (1998)

    Article  Google Scholar 

  8. Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-of-phase. Fatigue Fract. Eng. Mater. Struct. 11, 149–165 (1988)

    Article  Google Scholar 

  9. Qu, W.L., Zhao, E.N., Zhou, Q., Pi, Y.L.: Multiaxial low-cycle fatigue life evaluation under different non-proportional loading paths. Fatigue Fract. Eng. Mater. Struct. 41, 1064–1076 (2018)

    Article  Google Scholar 

  10. Socie, D.: Multiaxial fatigue damage models. J. Eng. Mater. Technol. 109, 293–298 (1987)

    Article  Google Scholar 

  11. Chu, C.C.: Fatigue damage calculation using the critical plane approach. J. Eng. Mater. Technol. 117, 41–49 (1995)

    Article  Google Scholar 

  12. Glinka, G., Wang, G., Plumtree, A.: Mean stress effects in multiaxial fatigue. Fatigue Fract. Eng. Mater. Struct. 18, 755–764 (1995)

    Article  Google Scholar 

  13. Morrow, J.: Fatigue properties of metals. Section 3.2, Fatigue Design Handbook, Pub. No. AE-4, (Society of Automotive Engineers, Warrendale, PA), pp. 21–29 (1968)

  14. Jiang, Y., Sehitoglu, H.: Fatigue and stress analysis of rolling contact. Report no. 161, UILU-ENG 92-3602, University of Illinois at Urbana-Champaign (1992)

  15. Ince, A., Glinka, G.: A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int J Fatigue 62, 34–41 (2014)

    Article  Google Scholar 

  16. Yu, Z.Y., Zhu, S.P., Liu, Q., Liu, Y.: Multiaxial fatigue damage parameter and life prediction without any additional material constants. Materials 10, 923–938 (2017)

    Article  Google Scholar 

  17. Zhu, S.P., Yu, Z.Y., Correia, J., De Jesus, A., Berto, F.: Evaluation and compare son of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials. Int. J. Fatigue 112, 279–288 (2018)

    Article  Google Scholar 

  18. Correia, J., Apetre, N., Arcari, A., De Jesus, A., Muniz-Clavente, M., Calcada, R., Berto, F., Fernandez-Canteli, A.: Generalized probabilistic model allowing for various fatigue damage variables. Int. J. Fatigue 100, 187–194 (2017)

    Article  Google Scholar 

  19. Castillo, E., Fernandez-Canteli, A.: A Unified Statistical Methodology for Modeling Fatigue Damage. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Calvente, M.M., Blason, S., Canteli, A.Fernandez: A probabilistic approach for multiaxial fatigue criteria. Frattura ed Integrità Strutturale 39, 160–165 (2017)

    Google Scholar 

  21. Liu, Y., Mahadevan, S.: Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue 27, 790–800 (2005)

    Article  MATH  Google Scholar 

  22. Liu, Y., Mahadevan, S.: Strain-based multiaxial fatigue damage modelling. Fatigue Fract. Eng. Mater. Struct. 28, 1177–1189 (2005)

    Article  Google Scholar 

  23. Wei, H., Liu, Y.: A critical plane-energy model for multiaxial fatigue life prediction. Fatigue Fract. Eng. Mater. Struct. 40, 1973–1983 (2017)

    Article  Google Scholar 

  24. Garud, Y.S.: A new approach to the evaluation of fatigue under multiaxial loadings. J. Eng. Mater. Technol. 103, 118–125 (1981)

    Article  Google Scholar 

  25. Lu, Y., Wu, H., Zhong, Z.: A simple energy-based model for non-proportional low-cycle multiaxial fatigue life prediction under constant amplitude loading. Fatigue Fract. Eng. Mater. Struct. 41, 1402–1411 (2018)

    Article  Google Scholar 

  26. Lu, C., Melendez, H., Martinez-Esnaola, J.M.: Fatigue damage prediction in multiaxial loading using a new energy-based parameter. Int. J. Fatigue 104, 99–111 (2017)

    Article  Google Scholar 

  27. Lu, C., Melendez, H., Martinez-Esnaola, J.M.: Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion. Int. J. Fatigue 108, 109–115 (2018)

    Article  Google Scholar 

  28. Lu, C., Melendez, H., Martinez-Esnaola, J.M.: A universally applicable multiaxial fatigue criterion in 2D cyclic loading. Int. J. Fatigue 110, 99–111 (2018)

    Article  Google Scholar 

  29. Carpinteri, A., Ronchei, C., Scorza, D., Vantadori, S.: Fatigue life estimation for multiaxial low cycle fatigue regime: the influence of the effective Poisson ratio value. Theor. Appl. Fract. Mech. 79, 77–83 (2015)

    Article  Google Scholar 

  30. Carpinteri, A., Berto, F., Campagnolo, A., Fortese, G., Ronchei, C., Scorza, D., Vantadori, S.: Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts. Theor. Appl. Fract. Mech. 84, 57–63 (2016)

    Article  Google Scholar 

  31. Li, J., Li, C.W., Zhang, Z.P.: Modeling of stable cyclic stress–strain responses under non-proportional loading. ZAMM. Z. Angew. Math. Mech. 98, 388–411 (2018)

    Article  MathSciNet  Google Scholar 

  32. Kanazawa, K., Miller, K.J., Brown, M.W.: Low cycle fatigue under out-of-phase loading conditions. J. Eng. Mater. Technol. 99, 222–228 (1977)

    Article  Google Scholar 

  33. Ohkawa, I., Takahashi, H., Moriwaki, M., Misumi, M.: A study on fatigue crack growth under out-of-phase combined loadings. Fatigue Fract. Eng. Mater. Struct. 20, 929–940 (1997)

    Article  Google Scholar 

  34. McClaflin, D., Fatemi, A.: Torsional deformation and fatigue of hardened steel including mean stress and strain gradient effect. Int. J. Fatigue 26, 773–784 (2004)

    Article  Google Scholar 

  35. Tair, S., Tnoue, T., Yoshida, T.: Low cycle fatigue under multiaxial stress in the case of combined cyclic tension–compression and cyclic torsion at room temperature. Proc. 12th Jpn. Cong. Test Mater. 2, 50–55 (1969)

    Google Scholar 

  36. Nitta, A., Ogata, T., Kuwabara, K.: Fracture mechanisms and life assessment under high strain biaxial cyclic loading of type 304 stainless steel. Fatigue Fract. Eng. Mater. Struct. 12, 77–92 (1989)

    Article  Google Scholar 

  37. Jiang, Y., Hertel, O., Vormwald, M.: An experimental evaluation of three critical plane multiaxial fatigue criteria. Int. J. Fatigue 29, 1490–1502 (2007)

    Article  Google Scholar 

  38. Shamsaei, N., Gladskyi, M., Panasovskyi, K., Shukaev, S., Fatimi, A.: Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects. Int. J. Fatigue 32, 1862–1874 (2010)

    Article  Google Scholar 

  39. Gao, Z., Zhao, T., Wang, X., Jiang, Y.: Multiaxial fatigue of 16MnR steel. J. Press. Vess. Technol. 131, 021403 (2009)

    Article  Google Scholar 

  40. Gates, N.R., Fatemi, A.: On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis. Int. J. Fatigue 100, 322–336 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51601221 and 51575524), and the Fundamental Research Funds for the Central University (No. JB180402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qiu, Yy., Li, Cw. et al. Prediction of fatigue life under multiaxial loading by using a critical plane-based model. Arch Appl Mech 89, 629–637 (2019). https://doi.org/10.1007/s00419-018-1478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1478-3

Keywords

Navigation