Vortex-induced transient stall

Abstract

This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency \({\varOmega }\). Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency \({\varOmega }_\mathrm {ind}<0.5\,{\varOmega }\). Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    The maximal flow number \({\hat{\varphi }}\) equals the tangent of the blade’s trailing edge angle.

References

  1. 1.

    Betz, A.: Schraubenpropeller mit geringstem Energieverlust. Mit einem Zusatz von L. Prandtl. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 193–217 (1919)

  2. 2.

    Brennen, C.E.: Hydrodynamics of Pumps. Oxford Science Publications. Concepts ETI; Oxford University Press, Norwich (1994)

  3. 3.

    Cloos, F.J., Stapp, D., Pelz, P.F.: Swirl boundary layer and flow separation at the inlet of a rotating pipe. J. Fluid Mech. 811, 350–371 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Dixon, S.L.: Some Three Dimensional Effects of Rotating Stall. HM Stationery Office, Richmond (1962)

    Google Scholar 

  5. 5.

    Gharib, M., Rambod, E., Shariff, K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Glauert, H.: Die Grundlagen der Tragflügel- und Luftschraubentheorie. Springer, Berlin (1929)

    Google Scholar 

  7. 7.

    Goldstein, S.: On the vortex theory of screw propellers. Proc. R. Soc. Lond. Ser. A 123(792), 440–465 (1929)

    Article  MATH  Google Scholar 

  8. 8.

    Greitzer, E.M.: Review-axial compressor stall phenomena. J. Fluids Eng. 102(2), 134–151 (1980)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Pelz, P.F., Spurk, J.H., Müller, H.D.J.: Reducing mixing at the outlet bore of a cylinder. Arch. Appl. Mech. 68(6), 395–406 (1998)

    Article  MATH  Google Scholar 

  10. 10.

    Prandtl, L.: Über die Entstehung von Wirbeln in der idealen Flüssigkeit, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben. In: Vorträge aus dem Gebiete der Hydro-und Aerodynamik, pp. 18–33. Springer, Innsbruck (1924)

  11. 11.

    van Kuik, G.: The relationship between loads and power of a rotor and an actuator disc. J. Phys. Conf. Ser. 555, 012,101 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. F. Pelz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelz, P.F., Taubert, P. Vortex-induced transient stall. Arch Appl Mech 89, 307–312 (2019). https://doi.org/10.1007/s00419-018-1468-5

Download citation

Keywords

  • Analytical methods
  • Fluid dynamics
  • Kinematic stall
  • Potential theory
  • Turbomachinery
  • Vortex dynamics