Analysis of an optimization problem for a piezoelectric energy harvester


The problem of optimal energy harvesting for a piezoelectric element driven by mechanical vibrations is stated in terms of an ODE system with hysteresis under the time derivative coupling a mechanical oscillator with an electric circuit with or without inductance. In the piezoelectric constitutive law, both the self-similar piezoelectric butterfly character of the hysteresis curves and feedback effects are taken into account in a thermodynamically consistent way. The physical parameters of the harvester are chosen to be the control variable, and the goal is to maximize the harvested energy for a given mechanical load and a given time interval. If hysteresis is modeled by the Preisach operator, the system is shown to be well-posed with continuous data dependence. For the special case of the play operator, we derive first-order necessary optimality conditions and an explicit form of the gradient of the total harvested energy functional in terms of solutions to the adjoint system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Abdelkefi, A., Nayfeh, A.H., Haj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67(2), 1221–1232 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Al Janaideh, M., Krejčí, P.: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE-ASME Trans. Mechatron. 18, 1498–1507 (2013)

    Article  Google Scholar 

  3. 3.

    Al Janaideh, M., Rakheja, S., Su, C.-Y.: Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 17, 656–670 (2009)

    Article  Google Scholar 

  4. 4.

    Brokate, M.: Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ. Verlag Peter D. Lang, Frankfurt am Main (1987)

    Google Scholar 

  5. 5.

    Brokate, M.: ODE control problems including the Preisach hysteresis operator: necessary optimality conditions. In: Feichtinger, G. (ed.) Dynamic Economic Models and Optimal Control (Vienna, 1991). North-Holland, Amsterdam, pp. 51–68 (1991)

  6. 6.

    Brokate, M., Krejčí, P.: Optimal control of ODE systems involving a rate independent variational inequality. DCDS B 18, 331–348 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31, 695–712 (2002)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Dai, X., Wen, Y., Li, P., Yang, J., Jiang, X.: A vibration energy harvester using magnetostrictive/piezoelectric composite transducer. In: Proceedings of Sensors Conference. IEEE, pp. 1447–1450 (2009)

  9. 9.

    Davino, D., Giustiniani, A., Visone, C.: Magnetoelastic energy harvesting: modeling and experiments. In: Berselli, G., Vertechy, R., Vassura, G. (eds.) Smart Actuation and Sensing Systems—Recent Advances and Future Challenges, pp. 487–512. InTech, Rijeka (2012)

    Google Scholar 

  10. 10.

    Davino, D., Krejčí, P., Visone, C.: Fully coupled modeling of magnetomechanical hysteresis through ‘thermodynamic’ compatibility. Smart Mater. Struct. 22, 095009 (2013)

    Article  Google Scholar 

  11. 11.

    Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)

    Google Scholar 

  12. 12.

    Gudovich, A., Quincampoix, M.: Optimal control with hysteresis nonlinearity and multi- dimensional play operator. SIAM J. Control Opt. 49, 788–807 (2011)

    MATH  Article  Google Scholar 

  13. 13.

    Kamlah, M.: Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena. Contin. Mech. Thermodyn. 13, 219–268 (2001)

    MATH  Article  Google Scholar 

  14. 14.

    Kaltenbacher, B., Krejčí, P.: A thermodynamically consistent phenomenological model for ferroelectric and ferroelastic hysteresis. ZAMM Z. Angew. Math. Mech. 96, 874–891 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Krejčí, P.: Hysteresis, Convexity, and Dissipation in Hyperbolic Equations. Gakkōtosho, Tokyo (1996)

    Google Scholar 

  16. 16.

    Krejčí, P., Monteiro, G.A.: Oscillations of a temperature-dependent piezoelectric rod. Nonlinear Anal. Real World Appl. (to appear)

  17. 17.

    Krejčí, P., Timoshin, S.A.: Coupled ODEs control system with unbounded hysteresis region. SIAM J. Control Optim. 54, 1934–1949 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Kuhnen, K.: Modeling, identification and compensation of complex hysteretic nonlinearities—a modified Prandtl–Ishlinskii approach. Eur. J. Control 9, 407–418 (2003)

    MATH  Article  Google Scholar 

  19. 19.

    Kuhnen, K., Krejčí, P.: Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: a new Preisach modeling approach. IEEE Trans. Autom. Control 54, 537–550 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Nayfeh, A.H.: Perturbation Methods. Wiley, Hoboken (2004)

    Google Scholar 

  21. 21.

    Peigney, M., Siegert, D.: Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Mater. Struct. 22, 095019 (2013)

    Article  Google Scholar 

  22. 22.

    Renno, J.M., Daqaq, M.F., Inman, D.J.: On the optimal energy harvesting from a vibration source. J. Sound Vib. 329, 386–405 (2009)

    Article  Google Scholar 

  23. 23.

    Rakotondrabe, M., Clevy, C., Lutz, P.: Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever. In: Proc. IEEE Int. Conf. Intell. Robots Syst., Nice, France, pp. 558–563 (2008)

  24. 24.

    Roundy, S.: On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16, 809–823 (2005)

    Article  Google Scholar 

  25. 25.

    Sprekels, J., Tiba, D.: Optimization of differential systems with hysteresis, In: Barbu, V., Lasiecka, I., Tiba, D., Varsan, C. (eds.) Analysis and Optimization of Differential Systems: IFIP TC7 / WG7.2 International Working Conference on Analysis and Optimization of Differential Systems, September 10–14, 2002, Constanta, Romania. Springer, Boston, MA, pp. 387–398 (2003)

  26. 26.

    Stanton, S., Erturk, A., Mann, B., Inman, D.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108, 074903 (2010)

    Article  Google Scholar 

  27. 27.

    Szarka, G.D., Stark, B.H., Burrow, S.G.: Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27, 803–815 (2012)

    Article  Google Scholar 

  28. 28.

    Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)

    Article  Google Scholar 

  29. 29.

    Triplett, A., Quinn, D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959–1967 (2009)

    Article  Google Scholar 

  30. 30.

    Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)

    Article  Google Scholar 

  31. 31.

    Xiang, H.J., Wang, J.J., Shi, Z.F., Zhang, Z.W.: Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements. Smart Mater. Struct. 22, 095024 (2013)

    Article  Google Scholar 

Download references


The authors thank both reviewers for their valuable comments. Moreover, financial support by the GAČR Grant GA15-12227S, RVO: 67985840, and FWF Grant P30054, is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Barbara Kaltenbacher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the GAČR Grant GA15-12227S, RVO: 67985840, and FWF Grant P30054.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaltenbacher, B., Krejčí, P. Analysis of an optimization problem for a piezoelectric energy harvester. Arch Appl Mech 89, 1103–1122 (2019).

Download citation


  • Hysteresis
  • Piezoelectricity
  • Differential equations
  • Optimal control