Skip to main content

On the dynamics of a vibro-driven capsule system

Abstract

This paper studies the nonlinear dynamics of a two-degree-of-freedom vibro-driven capsule system. The capsule is capable of rectilinear locomotion benefiting from the periodic motion of the driving pendulum and the sliding friction between the capsule and the environmental surface in contact. Primary attentions are devoted to the dynamic analysis of the motion and stick-slip effect of the capsule system. Following a modal decoupling procedure, a profile of periodic responses is obtained. Subsequently, this work emphasizes the influences of elasticity and viscosity on the dynamic responses in a mobile system, whose implicit qualitative properties are identified using bifurcation diagrams and Poincaré sections. A locomotion-performance index is proposed and evaluated to identify the optimal viscoelastic parameters. It is found that the dynamic behaviour of the capsule system is mainly periodic, and the desired forward motion of the capsule can be achieved through optimal selection of the elasticity and viscosity coefficients. In view of the stick-slip motion, the critical equilibrium and its dynamic behaviours, different regions of oscillations of the driving pendulum are identified, with the attention focusing on the critical region where linearities are absent and nonlinearities dominate the dynamic behaviour of the pendulum. The conditions for stick-slip motions to achieve a pure forward motion are investigated. The proposed approach can be adopted in designing and selecting of suitable operating parameters for vibro-driven or joint-actuated mechanical systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Böhm, V., Kaufhold, T., Zeidis, I., Zimmermann, K.: Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members. Arch. Appl. Mech. 87, 853–864 (2017). https://doi.org/10.1007/s00419-016-1183-z

    Article  Google Scholar 

  2. Fang, H.-B., Xu, J.: Controlled motion of a two-module vibration-driven system induced by internal acceleration-controlled masses. Arch. Appl. Mech. 82, 461–477 (2012)

    Article  Google Scholar 

  3. Liu, P., Yu, H., Cang, S.: Geometric analysis-based trajectory planning and control for under actuated capsule systems with viscoelastic property. Trans. Inst. Meas. Control. (2017). https://doi.org/10.1177/0142331217708833

    Article  Google Scholar 

  4. Huda, M.N., Yu, H.: Trajectory tracking control of an underactuated capsubot. Auton. Robots. 39, 183–198 (2015). https://doi.org/10.1007/s10514-015-9434-3

    Article  Google Scholar 

  5. Liu, Y., Wiercigroch, M., Pavlovskaia, E., Yu, H.: Modelling of a vibro-impact capsule system. Int. J. Mech. Sci. 66, 2–11 (2013). https://doi.org/10.1016/j.ijmecsci.2012.09.012

    Article  Google Scholar 

  6. Chernous’ko, F.L.: Analysis and optimization of the rectilinear motion of a two-body system. J. Appl. Math. Mech. 75, 493–500 (2011)

    Article  MathSciNet  Google Scholar 

  7. Liu, P., Yu, H., Cang, S.: Modelling and control of an elastically joint-actuated cart-pole underactuated system. In: 2014 20th International Conference on Automation and Computing (ICAC), IEEE, pp. 26–31 (2014)

  8. Liu, P., Yu, H., Cang, S.: On periodically Pendulum-diven Systems for Underactuated Locomotion: A Viscoelastic Jointed Model. Presented at the September (2015)

  9. Liu, P., Yu, H., Cang, S.: Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 549–554 (2016)

  10. Huda, M.N., Yu, H.-N., Wane, S.O.: Self-contained capsubot propulsion mechanism. Int. J. Autom. Comput. 8, 348 (2011)

    Article  Google Scholar 

  11. Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the capsubot using internal force and static friction. In: 2006 45th IEEE Conference on Decision and Control, pp. 6575–6580 (2006)

  12. Liu, P., Yu, H., Cang, S., Vladareanu, L.: Robot-assisted smart firefighting and interdisciplinary perspectives. In: 2016 22nd International Conference on Automation and Computing (ICAC), pp. 395–401 (2016)

  13. Ding, W.-C., Xie, J.H., Sun, Q.G.: Interaction of Hopf and period doubling bifurcations of a vibro-impact system. J. Sound Vib. 275, 27–45 (2004)

    Article  Google Scholar 

  14. Luo, G.-W., Xie, J.-H.: Hopf bifurcation of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 213, 391–408 (1998)

    Article  MathSciNet  Google Scholar 

  15. Chávez, J.P., Pavlovskaia, E., Wiercigroch, M.: Bifurcation analysis of a piecewise-linear impact oscillator with drift. Nonlinear Dyn. 77, 213–227 (2014)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Luo, A.C.: Parametric analysis of bifurcation and chaos in a periodically driven horizontal impact pair. Int. J. Bifurc. Chaos 22, 1250268 (2012)

    Article  MathSciNet  Google Scholar 

  17. Perchikov, N., Gendelman, O.V.: Dynamics and stability of a discrete breather in a harmonically excited chain with vibro-impact on-site potential. Phys. Nonlinear Phenom. 292, 8–28 (2015)

    Article  MathSciNet  Google Scholar 

  18. Yue, Y., Xie, J.: Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system. Int. J. Nonlinear Mech. 48, 51–58 (2013)

    Article  Google Scholar 

  19. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989). https://doi.org/10.1115/1.3152389

    Article  MathSciNet  MATH  Google Scholar 

  20. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

  21. Luo, G.W., Zhu, X.F., Shi, Y.Q.: Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: diversity and evolution of periodic-impact motions. J. Sound Vib. 334, 338–362 (2015). https://doi.org/10.1016/j.jsv.2014.08.029

    Article  Google Scholar 

  22. Batako, A.D.L., Lalor, M.J., Piiroinen, P.T.: Numerical bifurcation analysis of a friction-driven vibro-impact system. J. Sound Vib. 308, 392–404 (2007). https://doi.org/10.1016/j.jsv.2007.03.093

    Article  Google Scholar 

  23. Pavlovskaia, E., Hendry, D.C., Wiercigroch, M.: Modelling of high frequency vibro-impact drilling. Int. J. Mech. Sci. 91, 110–119 (2015). https://doi.org/10.1016/j.ijmecsci.2013.08.009

    Article  Google Scholar 

  24. Nagaya, K., Kurusu, A., Ikai, S., Shitani, Y.: Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. J. Sound Vib. 228, 773–792 (1999). https://doi.org/10.1006/jsvi.1999.2443

    Article  Google Scholar 

  25. KęCIK, K., Mitura, A., WARMIńSKI, J.: Efficiency analysis of an autoparametric pendulum vibration absorber. Eksploat. Niezawodn. 15, 221–224 (2013)

    Google Scholar 

  26. Sun, W., Li, J., Zhao, Y., Gao, H.: Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics 21, 250–260 (2011)

    Article  Google Scholar 

  27. Zhang, P., Ren, L., Li, H., Jia, Z., Jiang, T.: Control of wind-induced vibration of transmission tower-line system by using a spring pendulum. Math. Probl. Eng. 2015, 1–10 (2015)

    Google Scholar 

  28. El-Khoury, O., Adeli, H.: Recent advances on vibration control of structures under dynamic loading. Arch. Comput. Methods Eng. 20, 353–360 (2013)

    Article  Google Scholar 

  29. Tsampardoukas, G., Stammers, C.W., Guglielmino, E.: Hybrid balance control of a magnetorheological truck suspension. J. Sound Vib. 317, 514–536 (2008). https://doi.org/10.1016/j.jsv.2008.03.040

    Article  Google Scholar 

  30. Insperger, T., Milton, J., Stépán, G.: Acceleration feedback improves balancing against reflex delay. J. R. Soc. Interface 10, 20120763 (2013)

    Article  Google Scholar 

  31. Yang, B.D., Chu, M.L., Menq, C.H.: Stick-slip-separation analysis and non-linear stiffness and damping characterization of friction contacts having variable normal load. J. Sound Vib. 210, 461–481 (1998)

    Article  Google Scholar 

  32. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245, 685–699 (2001)

    Article  Google Scholar 

  33. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  Google Scholar 

  34. Luo, A.C., Gegg, B.C.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291, 132–168 (2006)

    Article  MathSciNet  Google Scholar 

  35. Olsson, H., Åström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control. 4, 176–195 (1998). https://doi.org/10.1016/S0947-3580(98)70113-X

    Article  MATH  Google Scholar 

  36. Muskinja, N., Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53, 631–639 (2006)

    Article  Google Scholar 

  37. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. Dissertation, Dept. of Electrical Engineering and Computer Science, MIT, aAI0803036 (2000)

  38. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)

    Article  Google Scholar 

  39. Guyon, E.: Second-order phase transitions: models and analogies. Am. J. Phys. 43, 877–881 (1975)

    Article  Google Scholar 

  40. Landau, L.D.: The Classical Theory of Fields. Elsevier, Amsterdam (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Yu, H. & Cang, S. On the dynamics of a vibro-driven capsule system. Arch Appl Mech 88, 2199–2219 (2018). https://doi.org/10.1007/s00419-018-1444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1444-0

Keywords