Skip to main content
Log in

A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)

    Google Scholar 

  3. Hu, W., Tian, Q., Hu, H.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)

    MathSciNet  Google Scholar 

  4. Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(1), 69–84 (2016)

    Google Scholar 

  5. Cammarata, A., Angeles, J., Sinatra, R.: Kinetostatic and inertial conditioning of the McGill Schonflies-motion generator. Adv. Mech. Eng. 2, 186203 (2010)

    Google Scholar 

  6. Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)

    Google Scholar 

  7. De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: International Conference on Control, Artificial Intelligence, Robotics, and Optimization (ICCAIRO), pp. 83–88. IEEE, Prague, Czech Republic, 20–22 May 2017 (2017)

  8. Ruggiero, A., Affatato, S., Merola, M., De Simone M.C.: FEM analysis of metal on UHMWPE total hip prosthesis during normal walking cycle. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 Sep 2017, Salerno, Italy, 2017, pp. 1885–1892 (2017)

  9. Barbagallo, R., Sequenzia, G., Cammarata, A., Oliveri, S.M., Fatuzzo, G.: Redesign and multibody simulation of a motorcycle rear suspension with eccentric mechanism. Int. J. Interact. Des. Manuf. (IJIDeM) 12(2), 517–524 (2018)

    Google Scholar 

  10. Barbagallo, R., Sequenzia, G., Oliveri, S.M., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(2), 207–221 (2016)

    Google Scholar 

  11. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 011010 (2017)

    Google Scholar 

  12. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multibody Dyn. 230(4), 307–328 (2016)

    Google Scholar 

  13. Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017)

    Google Scholar 

  15. Marques, F., Flores, P., Claro, J.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    MathSciNet  Google Scholar 

  16. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Google Scholar 

  17. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Google Scholar 

  18. Tian, Q., Zhang, Y., Chen, L., Yang, J.J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    MATH  Google Scholar 

  19. Cammarata, A.: A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech. Mach. Theory 118, 247–264 (2017)

    Google Scholar 

  20. De Simone, M.C., Guida, D.: On the development of a low cost device for retrofitting tracked vehicles for autonomous navigation. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 Sep 2017, Salerno, Italy, 2017, pp. 71–82 (2017)

  21. Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013)

    Google Scholar 

  22. Virlez, G., Bruls, O., Tromme, E., Duysinx, P.: Modeling joints with clearance and friction in multibody dynamic simulation of automotive differentials. Theor. Appl. Mech. Lett. 3(1), 013003 (2013)

    MATH  Google Scholar 

  23. De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015: 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2015, pp. 4483–4491 (2015)

  24. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)

    Google Scholar 

  25. Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)

    Google Scholar 

  26. Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)

    Google Scholar 

  27. Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29, 36–44 (2017)

    Google Scholar 

  28. Lan, P., Liu, M.: Integration of computer aided design and analysis using the absolute nodal coordinate formulation. In: IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 1, pp. 159–162 (2011)

  29. Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C., Jimenez-Octavio, J.R.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. 30(2), 119–138 (2013)

    MathSciNet  Google Scholar 

  30. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009)

    Google Scholar 

  31. Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Google Scholar 

  32. Tian, Q., Zhang, Y., Chen, L.P., Yang, J.: Two-link flexible manipulator modelling and tip trajectory tracking based on the absolute nodal coordinate method. Int. J. Robot. Autom. 24(2), 103 (2009)

    Google Scholar 

  33. Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527–548 (2016)

    MathSciNet  MATH  Google Scholar 

  34. De Simone, M.C., Guida, D.: Identification and control of an unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D: Mech. Eng. 80(1), 141–154 (2018)

    Google Scholar 

  35. Sharifzadeh, M., Timpone, F., Farnam, A., Senatore, A., Akbari, A.: Tyre-road adherence conditions estimation for intelligent vehicle safety applications. In: Mechanisms and Machine Science, vol. 47, pp. 389–398. Springer, Cham (2017)

    Google Scholar 

  36. Sharifzadeh, M., Akbari, A., Timpone, F., Daryani, R.: Vehicle tyre/road interaction modeling and identification of its parameters using real-time trust-region methods. IFAC-PapersOnLine 49(3), 111–116 (2016)

    MathSciNet  Google Scholar 

  37. Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 578–584 (2017)

    Google Scholar 

  38. Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016)

    Google Scholar 

  39. Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017)

    Google Scholar 

  40. Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52(11–12), 2503–2526 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013)

    Google Scholar 

  42. Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015)

    Google Scholar 

  43. Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60, 715–726 (2015)

    Google Scholar 

  44. Strano, S., Terzo, M.: A first order model based control of a hydraulic seismic isolator test rig. Eng. Lett. 21(2), 52–60 (2013)

    Google Scholar 

  45. Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009)

    Google Scholar 

  46. Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009)

    Google Scholar 

  47. Pappalardo, C.M., Guida, D.: System identification and experimental modal analysis of a frame structure. Eng. Lett. 26(1), 56–68 (2018)

    Google Scholar 

  48. Pappalardo, C.M., Guida, D.: System identification algorithm for computing the modal parameters of linear mechanical systems. Machines 6(2), 12 (2018)

    Google Scholar 

  49. Strano, S., Terzo, M.: On the real-time estimation of the wheel-rail contact force by means of a new nonlinear estimator design model. Mech. Syst. Signal Process. 105, 391–403 (2018)

    Google Scholar 

  50. Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Palomba, I., Richiedei, D., Trevisani, A.: Two-stage approach to state and force estimation in rigid-link multibody systems. Multibody Syst. Dyn. 39(1–2), 115–134 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Sun, J., Tian, Q., Hu, H.: Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech. Mach. Theory 104, 59–80 (2016)

    Google Scholar 

  53. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    MATH  Google Scholar 

  54. Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009)

    Google Scholar 

  55. Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009)

    Google Scholar 

  56. Shabana, A.A.: Comput. Contin. Mech., 3rd edn. Wiley, New York (2018)

    Google Scholar 

  57. Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10(5), 054506 (2015)

    Google Scholar 

  58. Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)

    MathSciNet  MATH  Google Scholar 

  59. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 021004 (2013)

    Google Scholar 

  60. De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)

    Google Scholar 

  61. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)

    Google Scholar 

  63. Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)

    MathSciNet  MATH  Google Scholar 

  65. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A mew locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    MATH  Google Scholar 

  66. Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 031008 (2017)

    Google Scholar 

  67. Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 051009 (2016)

    Google Scholar 

  68. Flores, P., Lankarani, H.M.: Multibody systems formulation. In: Solid Mechanics and its Applications, vol. 226, pp. 23–45. Springer, Berlin (2016)

    Google Scholar 

  69. Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Product Engineering: Eco-Design, Technologies and Green Energy, pp. 189–226. Springer (2005)

  70. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Garcia De Jalon, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)

    MATH  Google Scholar 

  72. Garcia De Jalon, J.G.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)

    MathSciNet  MATH  Google Scholar 

  73. Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)

    MATH  Google Scholar 

  74. Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic, constrained dynamical systems via Gauss principle. J. Appl. Mech. 60(3), 662–668 (1993)

    MathSciNet  MATH  Google Scholar 

  75. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    MathSciNet  MATH  Google Scholar 

  76. Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn. 81(1–2), 845–866 (2015)

    MathSciNet  Google Scholar 

  77. Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)

    MathSciNet  MATH  Google Scholar 

  78. Pappalardo, C.M., Guida, D.: Dynamic analysis of planar rigid multibody systems modeled using natural absolute coordinates. Appl. Comput. Mech. 12, 73–110 (2018)

    Google Scholar 

  79. Shampine, L.F.: Numerical Solution of Ordinary Differential Equations. CRC Press, Cambridge (1994)

    MATH  Google Scholar 

  80. Pappalardo, C.M., Guida, D.: On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch. Appl. Mech. 88(3), 419–451 (2017)

    Google Scholar 

  81. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  82. Shabana, A.A.: Computational Dynamics. Wiley, New York (2009)

    MATH  Google Scholar 

  83. Garcia De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-time Challenge. Springer, New York (2012)

    Google Scholar 

  84. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  85. De Falco, D., Pennestrí, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)

    Google Scholar 

  86. Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)

    Google Scholar 

  87. Wehage, R.A., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Google Scholar 

  88. Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Google Scholar 

  89. Wehage, K., Ravani, B.: A computational method for formulation and solution of dynamical equations for complex mechanisms and multibody systems. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V05AT08A031 (2017)

  90. Press, W.H., Teukolsky, S.A.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This research paper was principally developed by the first author (Carmine M. Pappalardo). The detailed review carried out by the second author (Domenico Guida) considerably improved the quality of the work.

Corresponding author

Correspondence to Carmine Maria Pappalardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., Guida, D. A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems. Arch Appl Mech 88, 2153–2177 (2018). https://doi.org/10.1007/s00419-018-1441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1441-3

Keywords

Navigation