Energetic assessment of an embedded aircraft propulsion: an analytic approach

Abstract

This paper investigates the energetic advantage of the embedded propulsion compared to a state-of-the-art propulsion of an aircraft. Hereby, the integral method of boundary layer theory together with the potential theory is applied to analyze the boundary layer thickness and the impact of the flow acceleration due to the embedded propulsion. The aircraft body is treated as a flat plate and the engine as a momentum disk. For an embedded propulsion, there is a trade-off of the engine size, since the propulsion efficiency is affected by the boundary layer. On the one hand, the propulsion inlet momentum is noticeably reduced for a small engine size and the viscous friction is reduced due to boundary layer ingestion. On the other hand, a slow jet speed, i.e., a large engine size, increases the propulsion efficiency as known. The outcome of the energetic assessment is the following: the propulsion efficiency is increased and the drag of the aircraft body is reduced by the embedded propulsion compared to a conventional propulsion. The optimized aircraft engine size depending on Reynolds number is given as well as the dimensionless cost function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    ACARE: Realising Eupore’s vision for aviation, strategic research & innovation agenda, volume 1. Advisory Council for Aviation Research and Innovation in Europe (2012)

  2. 2.

    Ashcraft, S., Padron, A., Pascioni, K., Stout Stoutach, G., Huff, D.: Review of propulsion technologies for n+ 3 subsonic vehicle concepts. NASTA/TM p. 217239 (2011)

  3. 3.

    Becker, E.: Gasdynamik, vol. 6. Teubner, Leipzig (1966)

    Google Scholar 

  4. 4.

    Betz, A.: Windenergie und ihre Ausnutzung durch Windmühlen. Vandenhoeck, Göttingen (1926)

    Google Scholar 

  5. 5.

    Boggia, S., Rud, K.: Intercooled recuperated gas turbine engine concept. AIAA Paper (2005-4192) (2005)

  6. 6.

    Cloos, F.J., Stapp, D., Pelz, P.: Swirl boundary layer and flow separation at the inlet of a rotating pipe. J. Fluid Mech. 811, 350–371 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Drela, M.: Power balance in aerodynamic flows. AIAA 47(7), 1761–1771 (2009)

    Article  Google Scholar 

  8. 8.

    Glauert, H.: Grundlagen der Tragflügel- und Luftschraubentheorie (aus dem Englischen übersetzt von H. Holl). Springer, Berlin (1929)

    Google Scholar 

  9. 9.

    Greitzer, E., Hollman, J., Lord, W.: N+3 aircraft concept designs and trade studies, Vol. 1 (2014). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100042401.pdf

  10. 10.

    Grönstedt, T., Irannezhad, M., Xu, L., Thulin, O., Lundbladh, A.: First and second law analysis of future aircraft engines. J. Eng. Gas Turbines Power 136(3), 031202 (2014)

    Article  Google Scholar 

  11. 11.

    Grönstedt, T., Xisto, C., Sethi, V., Rolt, A., Rosa, N.G., Seitz, A., Yakinthos, K., Donnerhack, S., Newton, P., Tantot, N., et al.: Ultra low emission technology innovations for mid-century aircraft turbine engines. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, pp. V003T06A001–V003T06A001. American Society of Mechanical Engineers (2016)

  12. 12.

    Hardin, L.W., Tillman, G., Sharma, O.P., Berton, J., Arend, D.J.: Aircraft system study of boundary layer ingesting propulsion. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012)

  13. 13.

    Kármán, T.V.: Über laminare und turbulente Reibung. ZAMM 1(4), 233–252 (1921)

    Article  Google Scholar 

  14. 14.

    Pelz, P., Cloos, F.J., Sieber, J.: Analytic assessment of an embedded aircraft propulsion. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, pp. V001T01A028–V001T01A028. American Society of Mechanical Engineers (2016)

  15. 15.

    Plas, A., Sargeant, M., Madani, V., Crichton, D., Greitzer, E., Hynes, T., Hall, C.: Performance of a boundary layer ingesting (BLI) propulsion system. In: 45th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit, Reno, NV, January, pp. 8–11 (2007)

  16. 16.

    Pohlhausen, K.: Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. ZAMM 1(4), 252–268 (1921)

    Article  Google Scholar 

  17. 17.

    Prandtl, L.: Führer durch die Strömungslehre. F. Vieweg & Sohn, Braunschweig (1944)

    Google Scholar 

  18. 18.

    Rankine, W.: On the mechanical principles of the action of propellers. Trans. Inst. Naval Archit. 6, 13–39 (1865)

    Google Scholar 

  19. 19.

    Rodriguez, D.L.: A multidisciplinary optimization method for designing boundary layer ingesting inlets. Ph.D. thesis, Stanford University (2001)

  20. 20.

    Sato, S.: The power balance method for aerodynamic performance assessment. Ph.D. thesis, Massachusetts Institute of Technology (2012)

  21. 21.

    Saul, S., Stonjek, S., Pelz, P.F.: Influence of compressibility on incidence losses of turbomachinery at subsonic operation. In: International Conference on Fan Noise, Technology and Numerical Methods (2015)

  22. 22.

    Schlichting, H.: Boundary-Layer Theory. McGraw Hill, New York (1970)

    Google Scholar 

  23. 23.

    Smith, A., Roberts, H.: The jet airplane utilizing boundary layer air for propulsion. J. Aeronaut. Sci. 14(2), 97–109 (1947)

    Article  Google Scholar 

  24. 24.

    Smith, L.H.: Wake ingestion propulsion benefit. J. Propuls. Power 9(1), 74–82 (1993)

    Article  Google Scholar 

  25. 25.

    Tillman, T., Hardin, L., Moffitt, B., Sharma, O., Lord, W., Berton, J., Arend, D.: System-level benefits of boundary layer ingesting propulsion. In: Invited Paper, Presented at the 49th AIAA Aerospace Sciences Meeting, Orlando, FL (2011)

  26. 26.

    Yakinthos, K., Missirlis, D., Sideridis, A., Vlahostergios, Z., Seite, O., Goulas, A.: Modelling operation of system of recuperative heat exchangers for aero engine with combined use of porosity model and thermo-mechanical model. Eng. Appl. Comput. Fluid. Mech. 6(4), 608–621 (2012)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter F. Pelz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelz, P.F., Cloos, F. & Sieber, J. Energetic assessment of an embedded aircraft propulsion: an analytic approach. Arch Appl Mech 88, 1905–1917 (2018). https://doi.org/10.1007/s00419-018-1417-3

Download citation

Keywords

  • Integral methods
  • Embedded aircraft propulsion
  • Boundary layer ingestion
  • Energetic assessment
  • Propulsion efficiency