Advertisement

Archive of Applied Mechanics

, Volume 88, Issue 10, pp 1905–1917 | Cite as

Energetic assessment of an embedded aircraft propulsion: an analytic approach

  • Peter F. PelzEmail author
  • Ferdinand-J. Cloos
  • Jörg Sieber
Original
  • 124 Downloads

Abstract

This paper investigates the energetic advantage of the embedded propulsion compared to a state-of-the-art propulsion of an aircraft. Hereby, the integral method of boundary layer theory together with the potential theory is applied to analyze the boundary layer thickness and the impact of the flow acceleration due to the embedded propulsion. The aircraft body is treated as a flat plate and the engine as a momentum disk. For an embedded propulsion, there is a trade-off of the engine size, since the propulsion efficiency is affected by the boundary layer. On the one hand, the propulsion inlet momentum is noticeably reduced for a small engine size and the viscous friction is reduced due to boundary layer ingestion. On the other hand, a slow jet speed, i.e., a large engine size, increases the propulsion efficiency as known. The outcome of the energetic assessment is the following: the propulsion efficiency is increased and the drag of the aircraft body is reduced by the embedded propulsion compared to a conventional propulsion. The optimized aircraft engine size depending on Reynolds number is given as well as the dimensionless cost function.

Keywords

Integral methods Embedded aircraft propulsion Boundary layer ingestion Energetic assessment Propulsion efficiency 

Notes

References

  1. 1.
    ACARE: Realising Eupore’s vision for aviation, strategic research & innovation agenda, volume 1. Advisory Council for Aviation Research and Innovation in Europe (2012)Google Scholar
  2. 2.
    Ashcraft, S., Padron, A., Pascioni, K., Stout Stoutach, G., Huff, D.: Review of propulsion technologies for n+ 3 subsonic vehicle concepts. NASTA/TM p. 217239 (2011)Google Scholar
  3. 3.
    Becker, E.: Gasdynamik, vol. 6. Teubner, Leipzig (1966)zbMATHGoogle Scholar
  4. 4.
    Betz, A.: Windenergie und ihre Ausnutzung durch Windmühlen. Vandenhoeck, Göttingen (1926)Google Scholar
  5. 5.
    Boggia, S., Rud, K.: Intercooled recuperated gas turbine engine concept. AIAA Paper (2005-4192) (2005)Google Scholar
  6. 6.
    Cloos, F.J., Stapp, D., Pelz, P.: Swirl boundary layer and flow separation at the inlet of a rotating pipe. J. Fluid Mech. 811, 350–371 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Drela, M.: Power balance in aerodynamic flows. AIAA 47(7), 1761–1771 (2009)CrossRefGoogle Scholar
  8. 8.
    Glauert, H.: Grundlagen der Tragflügel- und Luftschraubentheorie (aus dem Englischen übersetzt von H. Holl). Springer, Berlin (1929)CrossRefGoogle Scholar
  9. 9.
    Greitzer, E., Hollman, J., Lord, W.: N+3 aircraft concept designs and trade studies, Vol. 1 (2014). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100042401.pdf
  10. 10.
    Grönstedt, T., Irannezhad, M., Xu, L., Thulin, O., Lundbladh, A.: First and second law analysis of future aircraft engines. J. Eng. Gas Turbines Power 136(3), 031202 (2014)CrossRefGoogle Scholar
  11. 11.
    Grönstedt, T., Xisto, C., Sethi, V., Rolt, A., Rosa, N.G., Seitz, A., Yakinthos, K., Donnerhack, S., Newton, P., Tantot, N., et al.: Ultra low emission technology innovations for mid-century aircraft turbine engines. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, pp. V003T06A001–V003T06A001. American Society of Mechanical Engineers (2016)Google Scholar
  12. 12.
    Hardin, L.W., Tillman, G., Sharma, O.P., Berton, J., Arend, D.J.: Aircraft system study of boundary layer ingesting propulsion. In: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012)Google Scholar
  13. 13.
    Kármán, T.V.: Über laminare und turbulente Reibung. ZAMM 1(4), 233–252 (1921)CrossRefGoogle Scholar
  14. 14.
    Pelz, P., Cloos, F.J., Sieber, J.: Analytic assessment of an embedded aircraft propulsion. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, pp. V001T01A028–V001T01A028. American Society of Mechanical Engineers (2016)Google Scholar
  15. 15.
    Plas, A., Sargeant, M., Madani, V., Crichton, D., Greitzer, E., Hynes, T., Hall, C.: Performance of a boundary layer ingesting (BLI) propulsion system. In: 45th American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit, Reno, NV, January, pp. 8–11 (2007)Google Scholar
  16. 16.
    Pohlhausen, K.: Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. ZAMM 1(4), 252–268 (1921)CrossRefGoogle Scholar
  17. 17.
    Prandtl, L.: Führer durch die Strömungslehre. F. Vieweg & Sohn, Braunschweig (1944)zbMATHGoogle Scholar
  18. 18.
    Rankine, W.: On the mechanical principles of the action of propellers. Trans. Inst. Naval Archit. 6, 13–39 (1865)Google Scholar
  19. 19.
    Rodriguez, D.L.: A multidisciplinary optimization method for designing boundary layer ingesting inlets. Ph.D. thesis, Stanford University (2001)Google Scholar
  20. 20.
    Sato, S.: The power balance method for aerodynamic performance assessment. Ph.D. thesis, Massachusetts Institute of Technology (2012)Google Scholar
  21. 21.
    Saul, S., Stonjek, S., Pelz, P.F.: Influence of compressibility on incidence losses of turbomachinery at subsonic operation. In: International Conference on Fan Noise, Technology and Numerical Methods (2015)Google Scholar
  22. 22.
    Schlichting, H.: Boundary-Layer Theory. McGraw Hill, New York (1970)zbMATHGoogle Scholar
  23. 23.
    Smith, A., Roberts, H.: The jet airplane utilizing boundary layer air for propulsion. J. Aeronaut. Sci. 14(2), 97–109 (1947)CrossRefGoogle Scholar
  24. 24.
    Smith, L.H.: Wake ingestion propulsion benefit. J. Propuls. Power 9(1), 74–82 (1993)CrossRefGoogle Scholar
  25. 25.
    Tillman, T., Hardin, L., Moffitt, B., Sharma, O., Lord, W., Berton, J., Arend, D.: System-level benefits of boundary layer ingesting propulsion. In: Invited Paper, Presented at the 49th AIAA Aerospace Sciences Meeting, Orlando, FL (2011)Google Scholar
  26. 26.
    Yakinthos, K., Missirlis, D., Sideridis, A., Vlahostergios, Z., Seite, O., Goulas, A.: Modelling operation of system of recuperative heat exchangers for aero engine with combined use of porosity model and thermo-mechanical model. Eng. Appl. Comput. Fluid. Mech. 6(4), 608–621 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peter F. Pelz
    • 1
    Email author
  • Ferdinand-J. Cloos
    • 1
  • Jörg Sieber
    • 2
  1. 1.Chair of Fluid SystemsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.MTU Aero Engines AGMunichGermany

Personalised recommendations