Skip to main content
Log in

Minimum thickness of the gothic arch

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The paper investigates how the shape affects the Couplet–Heyman minimum thickness of the masonry pointed arch. The minimum thickness is such a structural thickness, at which a vault made of rigid voussoirs is stable for self-weight. It is expressed as a function of the pointed generator curve’s deviation from the semicircle. The arch is analysed in its undisplaced, geometrically perfect state. In the present study, perfect symmetry is assumed, and any disturbance in the symmetry is not considered. The joints between the voussoirs are placed in the radial direction. Two approaches are applied to derive the minimum thickness of the pointed arch, like Limit State Analysis (henceforth LSA) and Discrete Element Modelling (henceforth DEM). The application of the LSA leads to a nonlinear optimisation problem, which is solved by the so-called active set method. DEM technique is also applied, in which the model consists of discrete blocks each of which can move independently from each other. In DEM, sliding failure can freely develop during the loading process, which is neglected in the LSA. The results of the analyses show great correspondence, if sliding failure does not appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alexakis, H., Makris, N.: Minimum thickness of elliptical masonry arches. Acta Mech. 224, 2977–2991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bicanic, N., Stirling, C.: DDA analysis of the Couplet/Heyman minimum thickness arch problem. In: Bicanic, N. (ed.) Fourth International Conference on Analysis of Discontinuous Deformation (ICADD-4), pp. 165–170. Glasgow, UK (2001)

  3. Block, P., Ochsendorf, J.: Thrust network analysis: a new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell Spat. Struct. 48, 198–204 (2010)

    Google Scholar 

  4. Cavalagli, N., Gusella, V., Severini, L.: Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches. Int. J. Mech. Sci. 115–116, 645–656 (2016)

    Article  Google Scholar 

  5. Cocchetti, G., Colasante, G., Rizzi, E.: On the analysis of minimum thickness in circular masonry arches. Appl. Mech. Rev. ASME 64(5), 1–27 (2011)

    Google Scholar 

  6. Couplet, P.: De la poussèe des voûtes. Mém. l’Acad. R. Sci. Paris 4–7, 79–117 (1729)

    Google Scholar 

  7. De Rosa, E., Galazia, F.: Evaluation of pointed masonry arches through the static theorem of limit analysis. In: Lourenço, P.B., Oliveira, D.V., Portela, A. (eds.) 5th International Conferenca on Arch Bridges, pp. 659–668. Madeira, Portugal (2007)

  8. Fitchen, J.: The Construction of Gothic Cathedrals: A Study of Medieval Vault Erection. Clarendon Press, Oxford (1961)

    Google Scholar 

  9. Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987)

    MATH  Google Scholar 

  10. Foce, F., Aita, D.: The masonry arch between « limit » and « elastic » analysis. A critical re-examination of Durand-Claye’s method. In: Huerta, S., De Herrera, J., Benvenuto, A.E., Dragados, F. (eds.) First International Congress on Construction History, Madrid, Spain, pp. 895–908 (2003)

  11. Fraternali, F.: A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mech. Res. Commun. 37(2), 198–204 (2010)

    Article  MATH  Google Scholar 

  12. Gaetani, A., Monti, G., Lourenço, P.B., Marcari, G.: Design and analysis of cross vaults along history. Int. J. Archit. Herit. 10, 841–856 (2016)

    Article  Google Scholar 

  13. Heyman, J.: The safety of masonry arches. Int. J. Mech. Sci. 11(4), 363–385 (1969)

    Article  Google Scholar 

  14. Heyman, J.: The Masonry Arch. Wiley, New York (1982)

    Google Scholar 

  15. Heyman, J.: The Stone Skeleton. Structural Engineering of Masonry Architecture. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  16. Huerta, S.: The Debate about the structural behaviour of gothic vaults: from Viollet-le-Duc to Heyman. In: Kurrer, K.E., Lorenz, W., Wetzk, V. (eds.) Third International Congress on Construction History, Cottbus, Germany, pp. 837–844 (2009)

  17. Kooharian, A.: Limit analysis of voussoirs (segmental) and concrete arches. J. Am. Concr. Inst. 24(4), 317–328 (1952)

    Google Scholar 

  18. Kurrer, K.: The History of the Theory of Structures: From Arch Analysis to Computational Mechanics. Ernst & Sohn Verlag, Berlin (2008)

    Book  Google Scholar 

  19. Lengyel, G.: Discrete element analysis of gothic masonry vaults for self-weight and horizontal support displacement. Eng. Struct. 148, 195–209 (2017)

    Article  Google Scholar 

  20. Lengyel, G., Bagi, K.: Numerical analysis of the mechanical role of the ribs in groin vaults. Comput. Struct. 158, 42–60 (2015)

    Article  Google Scholar 

  21. Lengyel, G., Bagi, K.: Horizontal reaction components of pointed vaults. Int. J. Mason. Res. Innov. 1, 398–420 (2016)

    Article  Google Scholar 

  22. Milankovitch, M.: Theorie der Druckkurven. Z. Math. Phys. 55, 1–27 (1907)

    MATH  Google Scholar 

  23. Nikolic, D.: Graphical simulation of minimum thickness of clamped, pointed arch. In: 4. International Conference, Subotica, Serbia, pp. 199–210 (2016)

  24. Nikolic, D.: Thrust line analysis and the minimum thickness of pointed masonry arches. Acta Mech. 228, 2219–2236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ochsendorf, J.: The masonry arch on spreading supports. Struct. Eng. 84, 29–36 (2006)

    Google Scholar 

  26. Ochsendorf, M.J., Romano, A.: The mechanics of gothic masonry arches. Int. J. Archit. Herit. 4(1), 59–82 (2010)

    Article  Google Scholar 

  27. Petit, M.: Mémoire sur le calcul des voûtes circulaires. Mémorial de l’Officier du Génie 12, 73–150 (1835)

    Google Scholar 

  28. Rinehart, R.F.: The equivalence of definitions of a matrix function. Am. Math. Mon. 62, 395–414 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rizzi, E., Colasante, G., Frigerio, A., Cocchetti, G.: On the mixed collapse mechanism of semi-circular masonry arches. In: 8th International Conference on Structural Analysis of Historical Constructions, Wroclaw, Poland (2012)

  30. Rizzi, E., Rusconi, F., Cocchetti, G.: Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Eng. Struct. 60, 241–257 (2014)

    Article  Google Scholar 

  31. Sarhosis, V., Bagi, K., Lemos, J.V., Milani, G.: Computational Modeling of Masonry Structures Using the Discrete Element Method. IGI Global, Hershey (2016)

    Book  Google Scholar 

  32. Simon, J., Bagi, K.: Discrete element analysis of masonry domes with oval plan. Int. J. Archit. Herit. 10(4), 457–475 (2014)

    Article  Google Scholar 

  33. Sylvester, J.J.: On the equation to the secular inequalities in the planetar theory. Planet. Theory 16, 267–269 (1883)

    MATH  Google Scholar 

  34. Török, A.: Geológia Mérnököknek. Műegyetem Kiadó, Budapest (2007)

    Google Scholar 

  35. Van Mele, T., McInerney, J., DeJong, M.J., Block, P.: Physical and computational discrete element modelling of masonry vault collapse. In: 8th International Conference on Structural Analysis of Historical Constructions, Wroclaw, Poland (2012)

Download references

Acknowledgements

The author would like to thank Dr. Fabian Dedecker of ITASCA Consulting Inc. for his mentorship as well as the ITASCA Education Partnership Program for providing a copy of 3DEC to assist in the research and Tamás Forgács for his very remarkable notes. Financial support from the NKFI 100770 project is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lengyel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lengyel, G. Minimum thickness of the gothic arch. Arch Appl Mech 88, 769–788 (2018). https://doi.org/10.1007/s00419-018-1341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1341-6

Keywords

Navigation