Archive of Applied Mechanics

, Volume 88, Issue 4, pp 503–516

# A numerical study on the nonlinear behavior of corner supported flat and curved panels

• Gaurav Watts
• M. K. Singha
Original

## Abstract

The nonlinear behavior of corner supported plates and curved shell panels is investigated here using the first-order shear deformation theory based on Marguerre’s membrane strains for shallow shells and von Kármán’s nonlinearity. The nonlinear differential equations are transformed into a set of nonlinear algebraic equations by using the element-free Galerkin method. The moving kriging shape function with two different types of correlation formulae (Gaussian and quartic spline) is employed here. After studying the effectiveness of the method, a detailed parametric study is conducted to examine the effect of support size on the displacements and bending moments of corner supported rectangular plates. Thereafter, the numerical study is extended to the nonlinear bending and stability behaviors of corner supported shallow cylindrical and spherical shell panels.

## Keywords

Element-free Galerkin method Moving kriging shape function Support size Large deformation Shallow shells

## References

1. 1.
Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, NewYork (1959)
2. 2.
Rajaiah, K., Rao, A.K.: Collocation solution for point-supported square plates. ASME J. Appl. Mech. 45(2), 424–425 (1978)
3. 3.
Azarkhin, A.: Bending of thin plate with three-point support. ASCE J. Struct. Eng. 118(5), 1416–1419 (1992)
4. 4.
Wang, C.M., Wang, Y.C., Reddy, J.N.: Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates. Comput. Struct. 80(2), 145–154 (2002)
5. 5.
Lim, C.W., Yao, W.A., Cui, S.: Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. IES J. Part A Civil Struct. Eng. 1(2), 106–115 (2008)
6. 6.
Batista, M.: New analytical solution for bending problem of uniformly loaded rectangular plate supported on corner points. IES J. Part A Civil Struct. Eng. 3(2), 75–84 (2010)
7. 7.
Li, R., Wang, B., Li, P.: Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported. Int. J. Mech. Sci. 85, 212–218 (2014)
8. 8.
Li, R., Wang, B., Li, G.: Benchmark bending solutions of rectangular thin plates point-supported at two adjacent corners. Appl. Math. Lett. 40, 53–58 (2015)
9. 9.
Sahoo, S., Chakravorty, D.: Static bending of point supported composite hypar shell roofs. J. Struct. Eng. 34(2), 169–176 (2007)Google Scholar
10. 10.
Das, H.S., Chakravorty, D.: A finite element application in the analysis and design of point-supported composite conoidal shell roofs: suggesting selection guidelines. J. Strain Anal. Eng. Des. 45(3), 165–177 (2010)
11. 11.
Raju, I.S., Amba-Rao, C.L.: Free vibrations of a square plate symmetrically supported at four points on the diagonals. J. Sound Vib. 90(2), 291–297 (1983)
12. 12.
Utjes, J.C., Sarmiento, G.S., Laura, P.A.A., Gelos, R.: Vibrations of thin elastic plates with point supports: a comparative study. Appl. Acoust. 19(1), 17–24 (1986)
13. 13.
Schwarte, J.: Vibrations of corner point supported rhombic hypar-shells. J. Sound Vib. 175(1), 105–114 (1994)
14. 14.
Chakravorty, D., Bandyopadhyay, J.N., Sinha, P.K.: Finite element free vibration analysis of point supported laminated composite cylindrical shells. J. Sound Vib. 181(1), 43–52 (1995)
15. 15.
Chakravorty, D., Bandyopadhyay, J.N., Sinha, P.K.: Free vibration analysis of point-supported laminated composite doubly curved shells—a finite element approach. Comput. Struct. 54(2), 191–198 (1995)
16. 16.
Demir, C., Izmirli, S.B.: The effects of support size on the vibration of the point supported plate. Int. J. Phys. Sci. 6(8), 1920–1928 (2011)Google Scholar
17. 17.
Daripa, R., Singha, M.K.: Nonlinear vibration characteristics of point supported isotropic and symmetrically laminated plates. J. Aerosp. Sci. Technol. 62(2), 83 (2010)Google Scholar
18. 18.
Naghsh, A., Azhari, M.: Non-linear free vibration analysis of point supported laminated composite skew plates. Int. J. Non-Linear Mech. 76, 64–76 (2015)
19. 19.
Li, S., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1–34 (2002)
20. 20.
Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)
21. 21.
Gu, L.: Moving kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56(1), 1–11 (2003)
22. 22.
Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17(1–2), 26–35 (1995)
23. 23.
Krysl, P., Belytschko, T.: Analysis of thin shells by the element-free Galerkin method. Int. J. Solids Struct. 33(20), 3057–3080 (1996)
24. 24.
Bui, T.Q., Nguyen, T.N., Nguyen-Dang, H.: A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems. Int. J. Numer. Methods Eng. 77(10), 1371–1395 (2009)
25. 25.
Hale, J.S., Baiz, P.M.: A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 241–244, 311–322 (2012)
26. 26.
Bui, T.Q., Nguyen, M.N., Zhang, C.: Buckling analysis of Reissner–Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method. Eng. Anal. Bound. Elem. 35(9), 1038–1053 (2011)
27. 27.
Watts, G., Singha, M.K., Pradyumna, S.: Nonlinear bending analysis of isotropic plates supported on Winkler foundation using element free Galerkin method. Int. J. Struct. Civil Eng. Res. 4(4), 301–307 (2015)Google Scholar
28. 28.
Watts, G., Pradyumna, S., Singha, M.K.: Nonlinear analysis of quadrilateral composite plates using moving kriging based element free Galerkin method. Compos. Struct. 159, 719–727 (2017)
29. 29.
Kant, T., Kommineni, J.R.: C$$^{0}$$ finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory. Comput. Struct. 45(3), 511–520 (1992)
30. 30.
Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton (2004)
31. 31.
Khdeir, A.A., Librescu, L., Frederick, D.: A shear deformable theory of laminated composite shallow shell-type panels and their response analysis II: static response. Acta Mech. 77(1–2), 1–12 (1989)
32. 32.
Reddy, J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110(5), 794–809 (1984)
33. 33.
Palazotto A. N., Dennis S. T.: Nonlinear analysis of shell structures. American institute of aeronautics and astronautics, Washington (1992).
34. 34.
Kundu, C.K., Sinha, P.K.: Post buckling analysis of laminated composite shells. Compos. Struct. 78(3), 316–324 (2007)
35. 35.
Surana, K.S.: Geometrically nonlinear formulation for the curved shell elements. Int. J. Numer. Methods Eng. 19(4), 581–615 (1983)

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

## Authors and Affiliations

1. 1.Department of Applied MechanicsIndian Institute of Technology DelhiNew DelhiIndia