Skip to main content
Log in

Vibration characteristics of rotating orthotropic cantilever plates using analytical approaches: a comprehensive parametric study

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This manuscript is concerned with the free vibration analysis of rotating orthotropic cantilever plates attached with an arbitrary stagger angle to a hub. The general governing equations which include both the centrifugal inertia forces and Coriolis effects are derived using Hamilton’s principle. The results are obtained using extended Kantorovich method and extended Galerkin method which are compared with each other, and available data in the literature and in good agreements are observed. A very detailed study of the influence of varying stiffness ratio, rotation speed, stagger angle, hub radius ratio and aspect ratio on the dynamic characteristics is conducted. These investigations provide complementary results, which leads to improvement in design and appropriate optimization of the material and geometry in this class of problems. The observation of the results shows that the crossing/veering phenomenon is influenced by the stiffness ratio, stagger angle and hub radius ratio. It is found that the centrifugal stiffening rate in the spanwise bending modes is constant, while in the torsion mode is changeable. The plate with the lower stiffness ratio has the higher centrifugal stiffening rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Southwell, R., Gough, B.: The free transverse vibration of airscrew blades. Br. ARC Rep. Memo. 766, 358–369 (1921)

  2. Schilhansl, M.: Bending frequency of a rotating cantilever beam. J. Appl. Mech. Trans. Am. Soc. Mech. Eng. 25, 28–30 (1958)

    MathSciNet  MATH  Google Scholar 

  3. Hodges, D.H., Rutkowski, M.J.: Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA. J. 19, 1459–1466 (1981)

    Article  MATH  Google Scholar 

  4. Borri, M., Mantegazza, P.: Some contributions on structural and dynamic modeling of helicopter rotor blades. Aerotec. Missili. Spaz. 64(9), 143–154 (1985)

    MATH  Google Scholar 

  5. Yokoyama, T.: Free vibration characteristics of rotating Timoshenko beam. Int. J. Mech. Sci. 30, 743–755 (1988)

    Article  MATH  Google Scholar 

  6. Vyas, N.S., Rao, J.S.: Equations of motion of a blade rotating with variable angular velocity. J. Sound Vib. 156(2), 327–336 (1992)

    Article  MATH  Google Scholar 

  7. Naguleswaran, J.S.: Lateral vibration of a centrifugally tensioned uniform Euler–Bernoulli beam. J. Sound Vib. 176, 613–624 (1994)

    Article  MATH  Google Scholar 

  8. Da Silva, M.R.M.C.: A comprehensive analysis of the dynamics of a helicopter rotor blade. Int. J. Solids Struct. 35, 619–635 (1998)

    Article  MATH  Google Scholar 

  9. Yoo, H.H., Shin, S.H.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212, 807–828 (1998)

    Article  Google Scholar 

  10. Rao, S.S., Gupta, R.S.: Finite element analysis of rotating Timoshenko beams. J. Sound Vib. 242(1), 103–124 (2001)

    Article  MATH  Google Scholar 

  11. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002)

    Article  Google Scholar 

  12. Marugabandhu, P., Griffin, J.H.: A reduced-order model for evaluating the effect of rotational speed on the natural frequencies and mode shapes of blades. Trans. ASME J. Eng. Gas Turbines Power 125, 772–776 (2003)

    Article  Google Scholar 

  13. Banerjee, J.R., Su, H.: Dynamic stiffness formulation and free vibration analysis of a spinning composite beam. Comput. Struct. 84, 1208–1214 (2006)

    Article  Google Scholar 

  14. Lee, S.Y., Sheu, J.J.: Free vibration of an extensible rotating inclined Timoshenko beam. J. Sound Vib. 304, 606–624 (2007)

    Article  MATH  Google Scholar 

  15. Piovan, M.T., Sampaio, R.: A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327, 134–143 (2009)

    Article  Google Scholar 

  16. Li, L., Zhang, D.G., Zhu, W.D.: Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. J. Sound Vib. 333, 1526–1541 (2014)

    Article  Google Scholar 

  17. Genta, G., Feng, C., Tonoli, A.: Dynamics behavior of rotating bladed discs: a finite element formulation for the study of second and higher order harmonics. J. Sound Vib. 329, 5289–5306 (2010)

    Article  Google Scholar 

  18. Chiu, Y.-J., Chen, D.-Z.: The coupled vibration in a rotating multi-disk rotor system. Int. J. Mech. Sci. 53, 1–10 (2011)

    Article  Google Scholar 

  19. Dohnal, F., Knopf, E., Nordmann, R.: Efficient modelling of rotor-blade interaction using substructuring. In: Proceedings of the 9th IFToMM ICORD. Mechanism and Machine Science vol. 21, pp. 143–153 (2015)

  20. Dokainish, M.A., Rawtani, R.: Vibration analysis of rotating cantilever plates. Int. J. Numer. Methods Eng. 3(2), 233–248 (1971)

    Article  MATH  Google Scholar 

  21. Ramamurti, V., Kielb, R.: Natural frequencies of twisted rotating plates. J. Sound Vib. 97, 429–449 (1984)

    Article  Google Scholar 

  22. Wang, J.T.S., Shaw, D., Mahrenholtz, O.: Vibration of rotating rectangular plates. J. Sound Vib. 112(3), 455–468 (1987)

    Article  Google Scholar 

  23. Rao, J.S., Gupta, K.: Free vibrations of rotating small aspect ratio pretwisted blades. Mech. Mach. Theory 22(2), 159–167 (1987)

    Article  Google Scholar 

  24. Yoo, H.H., Kim, S.K.: Free vibration analysis of rotating cantilever plates. AIAA J. 40(11), 2188–2196 (2002)

    Article  Google Scholar 

  25. Yoo, H.H., Kim, S.K.: Flapwise bending vibration of rotating plates. Int. J. Numer. Methods Eng. 55, 785–802 (2002)

    Article  MATH  Google Scholar 

  26. Yoo, H.H., Kim, S., Inman, D.: Modal analysis of rotating composite cantilever plates. J. Sound Vib. 258, 233–246 (2002)

    Article  Google Scholar 

  27. Yoo, H.H., Pierre, C.: Modal characteristic of a rotating rectangular cantilever plate. J. Sound Vib. 259(1), 81–96 (2003)

    Article  Google Scholar 

  28. Lim, H.S., Yoo, H.H.: Modal analysis of cantilever plates undergoing accelerated in-plane motion. J. Sound Vib. 297, 880–894 (2006)

    Article  Google Scholar 

  29. Hashemi, S.H., Farhadi, S., Carra, S.: Free vibration analysis of rotating thick plates. J. Sound Vib. 323, 366–384 (2009)

    Article  Google Scholar 

  30. Sinha, S.K., Turner, K.E.: Natural frequencies of a pre-twisted blade in a centrifugal force field. J. Sound Vib. 330(11), 2655–2681 (2011)

    Article  Google Scholar 

  31. Sun, J., Kari, L., Arteaga, I.L.: A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle. J. Sound Vib. 332, 1355–1371 (2013)

    Article  Google Scholar 

  32. Sun, J., Arteaga, I.L., Kari, L.: Dynamic modeling of a multilayer rotating blade via quadratic layerwise theory. Compos. Struct. 99, 276–287 (2013)

    Article  Google Scholar 

  33. Li, L., Zhang, D.G.: Free vibration analysis of rotating functionally graded rectangular plates. Compos. Struct. 136, 493–504 (2016)

    Article  Google Scholar 

  34. Sinha, S.K., Zylka, R.P.: Vibration analysis of composite airfoil blade using orthotropic thin shell bending theory. Int. J. Mech. Sci. 121, 90–105 (2017)

    Article  Google Scholar 

  35. Rostami, H., Rahbar, A.R., Bakhtiari-Nejad, F.: Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates. Int. J. Mech. Sci. 115–116, 438–456 (2016)

    Article  Google Scholar 

  36. Kim, H.S., Cho, M., Kim, G.I.: Free-edge strength analysis in composite laminates by the extended Kantorovich method. Compos. Struct. 49, 229–235 (2000)

    Article  Google Scholar 

  37. Ungbhakorn, V., Singhatanadgid, P.: Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method. Compos. Struct. 73, 120–128 (2006)

    Article  Google Scholar 

  38. Ranji, A.Rahbar, Rostami, H.: A semi-analytical solution for forced vibrations response of rectangular orthotropic plates with various boundary conditions. J. Mech. Sci. Technol. 24, 357–364 (2010)

    Article  Google Scholar 

  39. Ranji, A.R., Rostami, H.: A semi-analytical technique for bending analysis of cylindrical panels with general loading and boundary conditions. J. Mech. Sci. Technol. 26(6), 1711–1718 (2012)

    Article  Google Scholar 

  40. Meirovitch, L.: Principles and Techniques of Vibrations. McGraw Hill, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rahbar Ranji.

Appendices

Appendix A

$$\begin{aligned} G_{i_{Ip} }= & {} \int {\xi _i ^{2}\hbox {d}x} , \quad \qquad \qquad \quad \qquad G_{(i+2)_{Ip} } =-\int {\left( {\frac{\hbox {d}\xi _i }{\hbox {d}x}} \right) ^{2}\hbox {d}x} , \quad \qquad \qquad (i=1,2),\nonumber \\ G_{5_{Ip} }= & {} C\left( {a_{12} +a_{66} } \right) \int \xi _1 \frac{\hbox {d}\xi _2 }{\hbox {d}x}\hbox {d}x -\left. {Ca_{12} \xi _1 \xi _2 } \right| _0^1 , \quad \qquad G_{6_{Ip} } =C\left( {a_{12} +a_{66} } \right) \int {\xi _2 \frac{\hbox {d}\xi _1 }{\hbox {d}x}\hbox {d}x} -\left. {Ca_{66} \xi _1 \xi _2 } \right| _0^1\nonumber \\ G_{7_{Ip} }= & {} \int \xi _{1} \xi _{2} \hbox {d}x , \quad \qquad \qquad \qquad \,\, G_{8_{Ip} } =\int {\xi _1 \xi _3 \hbox {d}x} , \quad \qquad \qquad \qquad G_{9_{Ip} } =\int {\xi _2 \xi _3 \hbox {d}x} ,\nonumber \\ G_{1_{Op} }= & {} \int {\xi _3 ^{2}\hbox {d}x} , \quad \qquad \qquad \qquad \quad G_{2_{Op} } =\int {\xi _3 \frac{\hbox {d}^{2}\xi _3 }{\hbox {d}x^{2}}\hbox {d}x} , \quad \qquad \qquad \,\, G_{3_{Op} } =\int {\xi _3 \frac{\hbox {d}^{4}\xi _3 }{\hbox {d}x^{4}}\hbox {d}x}\nonumber \\ G_{4_{Op} }= & {} \int {\left( {r+x} \right) \xi _3 \frac{\hbox {d}\xi _3 }{\hbox {d}x}\hbox {d}x} , \quad \quad G_{5_{Op} } =\int {\left( \int \left( {r+x} \right) \hbox {d}x\right) \xi _3 \frac{\hbox {d}^{2}\xi _3 }{\hbox {d}x^{2}}\hbox {d}x} \end{aligned}$$
(A.1)

Appendix B

$$\begin{aligned} F_{i_{Ip} }= & {} \int {\psi _i ^{2}\hbox {d}y} , \quad \qquad \qquad \qquad F_{(i+2)_{Ip} } =-\int {\left( {\frac{\hbox {d}\psi _i }{\hbox {d}y}} \right) ^{2}\hbox {d}y} , \quad \qquad \quad (i=1,2),\nonumber \\ F_{5_{Ip} }= & {} C\left( {a_{12} +a_{66} } \right) \int {\psi _1 \frac{\hbox {d}\psi _2 }{\hbox {d}y}\hbox {d}y-} \left. {Ca_{66} \psi _1 \psi _2 } \right| _{-1/2}^{1/2} , \quad \quad \quad F_{6_{Ip} } \nonumber \\= & {} C\left( {a_{12} +a_{66} } \right) \int {\psi _2 \frac{\hbox {d}\psi _1 }{\hbox {d}y}\hbox {d}y-} \left. {Ca_{12} \psi _1 \psi _2 } \right| _{-1/2}^{1/2}\nonumber \\ F_{7_{Ip} }= & {} \int {\psi _1 \psi _2 \hbox {d}y} , \quad \qquad \qquad F_{8_{Ip} } =\int {\psi _1 \psi _3 \hbox {d}y} , \quad \qquad \qquad F_{9_{Ip} } =\int {\psi _2 \psi _3 \hbox {d}y} ,\nonumber \\ F_{1_{Op} }= & {} \int {\psi _3 ^{2}\hbox {d}y} , \quad \qquad \qquad \quad F_{2_{Op} } =\int {\psi _3 \frac{\hbox {d}^{2}\psi _3 }{\hbox {d}y^{2}}\hbox {d}y} , \quad \qquad \,\, F_{3_{Op} } =\int {\psi _3 \frac{\hbox {d}^{4}\psi _3 }{\hbox {d}y^{4}}\hbox {d}y}\nonumber \\ F_{4_{Op} }= & {} \int {y\psi _3 \frac{\hbox {d}\psi _3 }{\hbox {d}y}\hbox {d}y} , \quad \qquad F_{5_{Op} } =\int {\left( \int y\hbox {d}y\right) \psi _3 \frac{\hbox {d}^{2}\psi _3 }{\hbox {d}y^{2}}\hbox {d}y} \end{aligned}$$
(B.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, H., Ranji, A.R. & Bakhtiari-Nejad, F. Vibration characteristics of rotating orthotropic cantilever plates using analytical approaches: a comprehensive parametric study. Arch Appl Mech 88, 481–502 (2018). https://doi.org/10.1007/s00419-017-1320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1320-3

Keywords

Navigation