Skip to main content
Log in

Fundamental frequency of IsoTruss tubular composite structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

To reveal free vibration modes and fundamental frequency of one-dimensional periodic IsoTruss tubular composite structures (ITTCSs), finite element modeling method and dynamic equivalent models were developed. ITTCS has two typical vibration modes: (a) shell-like modes and (b) beam-like modes. Short ITTCS and large inclinations of helical members easily induce shell-like vibration modes, while long ITTCS and small inclinations easily induce beam-like vibration modes. For shell-like vibration, the fundamental frequency is decided by the inclination, while the length has little influence. For beam-like vibration, the fundamental frequency depends on the column length and the inclination has slight influence. Dynamic continuum beam-like model and shell-like model were developed to predict the fundamental frequency of the IsoTruss structure. The predictions are consistent with the numerical simulations, and these models can be applied in engineering to instruct the dynamic design of the IsoTruss structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fan, H.-L., Zeng, T., Fang, D.-N., et al.: Mechanics of advanced fiber reinforced lattice composites. Acta Mech. Sin. 26, 825–835 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Samk, K.A., Yu, B., Hibbard, G.D.: Architectural design in stretch-formed microtruss composites. Compos. Part A 43, 955–961 (2012)

    Article  Google Scholar 

  3. Fan, H.-L., Fang, D.-N., Jing, F.-N.: Yield surfaces and micro-failure mechanism of block lattice truss materials. Mater. Des. 29, 2038–2042 (2008)

    Article  Google Scholar 

  4. Fan, H.-L., Jing, F.-N., Fang, D.-N.: Nonlinear mechanical properties of lattice truss materials. Mater. Des. 30, 511–517 (2009)

    Article  Google Scholar 

  5. Fan, H.-L., Meng, F.-H., Yang, W.: Sandwich panels with Kagome lattice cores reinforced by carbon fibers. Compos. Struct. 81, 533–539 (2007)

    Article  Google Scholar 

  6. Fan, H.-L., Jing, F.-N., Fang, D.-N.: Mechanical properties of hierarchical cellular materials. Part I: analysis. Compos. Sci. Technol. 68, 3380–3387 (2008)

    Article  Google Scholar 

  7. Fan, H.-L., Zhao, L., Chen, H.-L., et al.: Ductile deformation mechanisms and designing instructions for integrated woven textile sandwich composites. Compos. Sci. Technol. 72(12), 1338–1343 (2012)

  8. Liu, J.-Y., Xiang, L.-L., Kan, T.: The effect of temperature on the bending properties and failure mechanism of composite truss core sandwich structures. Compos. Part A 79, 146–154 (2015)

    Article  Google Scholar 

  9. Rackliffe, M.E., Jensen, D.W., Lucas, W.K.: Local and global buckling of ultra-lightweight IsoTruss\(^{\textregistered }\) structures. Compos. Sci. Technol. 66, 283–288 (2006)

    Article  Google Scholar 

  10. Weaver, T.J., Jensen, D.W.: Mechanical characterization of a graphite epoxy IsoTruss\(^{\textregistered }\). J. Aerosp. Eng. 13(1), 23–35 (2000)

    Article  Google Scholar 

  11. Lai, C.-L.: Mechanical properties and fabrication of composite grid structures (Dissertation). Northwestern Polytechnical University, Xi’an (2015)

  12. Woods, B.K.S., Hill, I., Friswell, M.I.: Ultra-efficient wound composite truss structures. Compos. Part A 90, 11–124 (2016)

    Article  Google Scholar 

  13. Lai, C.-L., Wang, J.-B., Liu, C., et al.: A flexible tooling and local consolidation process to manufacture 1D lattice truss composite structure. Compos. Sci. Technol. 113, 63–70 (2015)

    Article  Google Scholar 

  14. Rackliffe, M.E.: Development of ultra-lightweight IsoTruss\(^{\textregistered }\) grid structures. M.S. Thesis, Brigham Young University, Provo (2002)

  15. Sui, Q.-Q., Fan, H.-L., Lai, C.-L.: Failure analysis of 1D lattice truss composite structure in uniaxial compression. Compos. Sci. Technol. 118, 207–216 (2015)

    Article  Google Scholar 

  16. Li, W.-X., Sun, F.-F., Wang, P., et al.: A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments. Compos. Part A 81, 313–322 (2016)

    Article  Google Scholar 

  17. Han, Y.-S., Wang, P., Fan, H.-L.: Free vibration of CFRC lattice-core sandwich cylinder with attached mass. Compos. Sci. Technol. 118, 226–235 (2015)

    Article  Google Scholar 

  18. Fan, H.-L., Fang, D.-N., Chen, L.-M.: Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores. Compos. Sci. Technol. 69, 2695–2700 (2009)

    Article  Google Scholar 

  19. Zhang, H., Sun, F.-F., Fan, H.-L., et al.: Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder. Compos. Sci. Technol. 100, 26–33 (2014)

    Article  Google Scholar 

  20. Hu, Y., Li, W.-X., An, X.-Y., et al.: Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels. Compos. Sci. Technol. 125, 114–122 (2016)

    Article  Google Scholar 

  21. Lopatin, A.V., Morozov, E.V., Shatov, A.V.: An analytical expression for fundamental frequency of the composite lattice cylindrical shell with clamped edges. Compos. Struct. 141, 232–239 (2016)

    Article  Google Scholar 

  22. Salehian, A., Cliff, E.M., Inman, D.J.: Continuum modeling of an innovative space-based radar antenna truss. J. Aerosp. Eng. 19(4), 227–240 (2006)

    Article  Google Scholar 

  23. Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society, vol. 472, no. 2185, p. 20150790 (2016)

  24. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  25. Liu, Y.-Z., Chen, L.-Q., Chen, W.-L.: Mechanics of Vibration. Higher Education Press, Beijing (2011)

    Google Scholar 

  26. Fan, H.-L., Yang, W.: An equivalent continuum method of lattice structures. Acta Mech. Solida Sin. 19(2), 103–113 (2006)

    Article  Google Scholar 

  27. Gonçalves, R., Camotim, D.: The vibration behavior of thin-walled regular polygonal tubes. Thin Walled Struct. 84, 177–188 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Supports from National Natural Science Foundation of China (11172089, 11372095) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changliang Lai or Hualin Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Q., Lai, C. & Fan, H. Fundamental frequency of IsoTruss tubular composite structures. Arch Appl Mech 87, 2011–2024 (2017). https://doi.org/10.1007/s00419-017-1308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1308-z

Keywords

Navigation