Skip to main content
Log in

Geometrically linear continuum theory of dislocations revisited from a thermodynamical perspective

  • SPECIAL
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Continuum dislocation theory (CDT) allows the consideration of dislocation ensembles by introducing the dislocation density tensor. Though the kinematics of geometrically linear CDT are well established, the closure of governing field equations is not finished yet. The present study now brings together different principles for such a closure: It is shown how the field equations for the CDT can be obtained from potential energy minimization and from the phase field approach. These two energetic methods are integrated into a generic thermodynamic framework with twofold benefit: First, the rigorous thermodynamic treatment allows clarifying physical consequences of the energetic methods, among them the proof of thermodynamic consistency. Second, the framework provides a basis for consistent extensions of CDT. In this way, a new dynamic formulation of CDT is presented, which enables the analysis of the evolution of dislocation structures during plastic deformation. Moreover, a variety of possible dissipative phenomena is considered and the mechanical balance laws are deduced. For two special cases, the field equations are derived in the strong form and the stability of the solution is analyzed. Next, a flexible numerical solution algorithm is presented using the finite difference method. Solutions of various initial boundary value problems are presented for the case of plane deformations. Therefore, some of the dissipative phenomena are further investigated and two distinct sources of the Bauschinger effect are identified. Special attention is also given to different boundary conditions and their effect on the solution. For the case of uniaxial compression, the numerical results are confronted with experimental data. Thus, the simulations are validated and a new consistent interpretation of the experimental results is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agiasofitou, E., Lazar, M.: On the nonlinear continuum theory of dislocations: a gauge field theoretical approach. J. Elast. 99(2), 163–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amodeo, R.J., Ghoniem, N.M.: Dislocation dynamics. ii. Applications to the formation of persistent slip bands, planar arrays, and dislocation cells. Phys. Rev. B 41, 6968–6976 (1990)

    Article  Google Scholar 

  3. Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47(5), 1597–1611 (1999)

    Article  Google Scholar 

  4. Berdichevsky, V.: Continuum theory of dislocations revisited. Contin. Mech. Thermodyn. 18(3–4), 195–222 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berdichevsky, V.L.: On thermodynamics of crystal plasticity. Scripta Mater. 54(5), 711–716 (2006)

    Article  Google Scholar 

  6. Berdichevsky, V.L., Le, K.C.: Dislocation nucleation and work hardening in anti-plane constrained shear. Contin. Mech. Thermodyn. 18(7–8), 455–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biot, M.A.: Theory of propagation of elastic waves in a fluidsaturated porous solid. i. Lowfrequency range. J Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  Google Scholar 

  8. Bulatov, V., Cai, W.: Computer Simulations of Dislocations (Oxford Series on Materials Modelling). Oxford University Press, Oxford (2006)

    Google Scholar 

  9. Chiu, Y., Veyssiere, P.: Dislocation self-organization under single slip straining and dipole properties. Mater. Sci. Eng. A 483–484, 191–194 (2008)

    Article  Google Scholar 

  10. Cleja-Tigoiu, S.: Non-local elasto-viscoplastic models with dislocations in finite elasto-plasticity. Part i: constitutive framework. Math. Mech. Solids 18(4), 349–372 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cordero, N.M., Gaubert, A., Forest, S., Busso, E.P., Gallerneau, F., Kruch, S.: Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58(11), 1963–1994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dj, S., Forest, S., Jaric, J.P.: Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471(2175), 20140,868+ (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Field, D.P., Magid, K.R., Mastorakos, I.N., Florando, J.N., Lassila, D.H., Morris, J.W.: Mesoscale strain measurement in deformed crystals: a comparison of x-ray microdiffraction with electron backscatter diffraction. Phil. Mag. 90(11), 1451–1464 (2010)

    Article  Google Scholar 

  14. Florando, J.N., LeBlanc, M.M., Lassila, D.H.: Multiple slip in copper single crystals deformed in compression under uniaxial stress. Scr. Mater. 57(6), 537–540 (2007)

    Article  Google Scholar 

  15. Forest, S., Guéninchault, N.: Inspection of free energy functions in gradient crystal plasticity. Acta. Mech. Sin. 29(6), 763–772 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giorgi, C.: Continuum thermodynamics and phase-field models. Milan J. Math. 77(1), 67–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gregor, V.: Self-organization approach to cyclic microplasticity: a model of a persistent slip band. Int. J. Plast. 14(1–3), 159–172 (1998)

    Article  MATH  Google Scholar 

  18. Groma, I., Csikor, F.F., Zaiser, M.: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51(5), 1271–1281 (2003)

    Article  Google Scholar 

  19. Groma, I., Vandrus, Z., Ispanovity, P.D.: Scale-free phase field theory of dislocations. Phys. Rev. Lett. 114(1), 015503 (2015)

    Article  Google Scholar 

  20. Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part ii: finite deformations. Int. J. Plast. 21(12), 2297–2318 (2005)

    Article  MATH  Google Scholar 

  22. Hochrainer, T.: Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids 88, 12–22 (2016)

    Article  MathSciNet  Google Scholar 

  23. Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Butterworth-Heinemann, Oxford (2011)

    Google Scholar 

  24. Javanbakht, M., Levitas, V.I.: Phase field approach to dislocation evolution at large strains: computational aspects. Int. J. Solids Struct. 82, 95–110 (2016)

    Article  Google Scholar 

  25. Kaluza, M., Le, K.C.: On torsion of a single crystal rod. Int. J. Plast. 27(3), 460–469 (2011)

    Article  MATH  Google Scholar 

  26. Kochmann, D.M., Le, K.C.: Dislocation pile-ups in bicrystals within continuum dislocation theory. Int. J. Plast. 24(11), 2125–2147 (2008)

    Article  MATH  Google Scholar 

  27. Kossevich, A.M.: The Crystal Lattice. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (1999)

    Book  MATH  Google Scholar 

  28. Koster, M., Le, K.C., Nguyen, B.D.: Formation of grain boundaries in ductile single crystals at finite plastic deformations. Int. J. Plast. 69, 134–151 (2015)

    Article  Google Scholar 

  29. Koyama, T.: Phase field. In: Czichos, H., Saito, T., Smith, L. (eds.) Springer Handbook of Materials Measurement Methods, pp. 1031–1055. Springer, Berlin (2006)

    Chapter  Google Scholar 

  30. Kröner, E.: The internal mechanical state of solids with defects. Int. J. Solids Struct. 29(14–15), 1849–1857 (1992)

    Article  MATH  Google Scholar 

  31. Kysar, J.W., Saito, Y., Oztop, M.S., Lee, D., Huh, W.T.: Experimental lower bounds on geometrically necessary dislocation density. Int. J. Plast. 26(8), 1097–1123 (2010)

    Article  MATH  Google Scholar 

  32. Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: static solutions of screw and edge dislocations. Phil. Mag. 89(3), 199–231 (2009)

    Article  Google Scholar 

  33. Le, K.C.: Introduction to Micromechanics. Nova Science, Hauppauge (2010)

    Google Scholar 

  34. Le, K.C.: Three-dimensional continuum dislocation theory. Int. J. Plast. 76, 213–230 (2016)

    Article  Google Scholar 

  35. Le, K.C., Günther, C.: Nonlinear continuum dislocation theory revisited. Int. J. Plast. 53, 164–178 (2014)

    Article  Google Scholar 

  36. Le, K.C., Nguyen, B.D.: Polygonization: theory and comparison with experiments. Int. J. Eng. Sci. 59, 211–218 (2012)

    Article  Google Scholar 

  37. Le, K.C., Nguyen, Q.S.: Polygonization as low energy dislocation structure. Contin. Mech. Thermodyn. 22(4), 291–298 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Le, K.C., Sembiring, P.: Analytical solution of plane constrained shear problem for single crystals within continuum dislocation theory. Arch. Appl. Mech. 78(8), 587–597 (2008)

    Article  MATH  Google Scholar 

  39. Le, K.C., Sembiring, P.: Plane constrained shear of single crystal strip with two active slip systems. J. Mech. Phys. Solids 56(8), 2541–2554 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Le, K.C., Sembiring, P.: Plane constrained uniaxial extension of a single crystal strip. Int. J. Plast. 25(10), 1950–1969 (2009)

    Article  Google Scholar 

  41. Levitas, V.I., Javanbakht, M.: Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J. Mech. Phys. Solids 82, 345–366 (2015)

    Article  MathSciNet  Google Scholar 

  42. Magid, K.R., Florando, J.N., Lassila, D.H., LeBlanc, M.M., Tamura, N., Morris, J.W.: Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal. Phil. Mag. 89(1), 77–107 (2009)

    Article  Google Scholar 

  43. Negahban, M.: Vectors and Tensors, pp. 117–167. CRC Press, Boca Raton (2012)

    Google Scholar 

  44. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  45. Pantleon, W.: Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 58(11), 994–997 (2008)

    Article  Google Scholar 

  46. Richeton, T., Dobron, P., Chmelik, F., Weiss, J., Louchet, F.: On the critical character of plasticity in metallic single crystals. Mater. Sci. Eng. A 424(1–2), 190–195 (2006)

    Article  Google Scholar 

  47. Sandfeld, S., Monavari, M., Zaiser, M.: From systems of discrete dislocations to a continuous field description: stresses and averaging aspects. Modell. Simul. Mater. Sci. Eng. 21(8), 085,006+ (2013)

    Article  Google Scholar 

  48. Sandfeld, S., Thawinan, E., Wieners, C.: A link between microstructure evolution and macroscopic response in elasto-plasticity: formulation and numerical approximation of the higher-dimensional continuum dislocation dynamics theory. Int. J. Plast. 72, 1–20 (2015)

    Article  Google Scholar 

  49. Shutov, A.V., Ihlemann, J.: A viscoplasticity model with an enhanced control of the yield surface distortion. Int. J. Plast. 39, 152–167 (2012)

    Article  Google Scholar 

  50. Shutov, A.V., Kreißig, R.: Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput. Methods Appl. Mech. Eng. 197(21–24), 2015–2029 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Silbermann, C.B., Ihlemann, J.: Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory. IOP Conf. Ser. Mater. Sci. Eng. 118, 012,034+ (2016)

    Article  Google Scholar 

  52. Silbermann, C.B., Ihlemann, J.: Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics. IOP Conf. Ser. Mater. Sci. Eng. 181, 012,037+ (2017)

    Article  Google Scholar 

  53. Silbermann, C.B., Shutov, A.V., Ihlemann, J.: Modeling the evolution of dislocation populations under non-proportional loading. Int. J. Plast. 55, 58–79 (2014)

    Article  Google Scholar 

  54. Ván, P., Berezovski, A., Papenfuss, C.: Thermodynamic approach to generalized continua. Contin. Mech. Thermodyn. 26(3), 403–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Walgraef, D.: Spatio-Temporal Pattern Formation. Springer, New York (1997)

    Book  MATH  Google Scholar 

  56. Wang, Y.U., Jin, Y.M., Cuitiño, A.M., Khachaturyan, A.G.: Nanoscale phase field microelasticity theory of dislocations: model and 3d simulations. Acta Mater. 49(10), 1847–1857 (2001)

    Article  Google Scholar 

  57. Wriggers, P.: Solution methods for time independent problems. In: Nonlinear Finite Element Methods, pp. 149–204. Springer Heidelberg (2008)

  58. Wulfinghoff, S., Forest, S., Böhlke, T.: Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xia, S., El-Azab, A.: Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Modell. Simul. Mater. Sci. Eng. 23(5), 055,009+ (2015)

    Article  Google Scholar 

  60. Zahn, D., Tlatlik, H., Raabe, D.: Modeling of dislocation patterns of small- and high-angle grain boundaries in aluminum. Comput. Mater. Sci. 46(2), 293–296 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Silbermann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (gif 9147 KB)

Plastic slip field \(\beta_p/ \permille \) for \(\varphi=0^\circ\), final state plotted on the deformed crystal domain (magnified by a factor of 20): the fields are inhomogeneous.

Supplementary material 2 (gif 6942 KB)

Plastic slip field \(\beta_p/ \permille\) for \(\varphi=45^\circ\), final state plotted on the deformed crystal domain (magnified by a factor of 20): the fields are inhomogeneous.

Supplementary material 3 (gif 9830 KB)

Dislocation density field \(\rho_d/ {\upmu m}^{-2} {\rm for} \varphi=0^\circ\), final state plotted on the undeformed crystal domain: dislocation structures with a high density have emerged.

Supplementary material 4 (gif 6787 KB)

Dislocation density field \(\rho_d/ {\upmu m}^{-2} {\rm for} \varphi=45^\circ\), final state plotted on the undeformed crystal domain: dislocation structures with a high density have emerged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silbermann, C.B., Ihlemann, J. Geometrically linear continuum theory of dislocations revisited from a thermodynamical perspective. Arch Appl Mech 88, 141–173 (2018). https://doi.org/10.1007/s00419-017-1296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1296-z

Keywords

Navigation