Archive of Applied Mechanics

, Volume 88, Issue 1–2, pp 271–286 | Cite as

Computational first-order homogenization in chemo-mechanics

Special
  • 145 Downloads

Abstract

In the present contribution, we consider species diffusion coupled to finite deformations in strongly heterogeneous microstructures. A semi-dual energy formulation parameterized in terms of the chemical potential is obtained by Legendre transformation of the free energy. Doing so avoids the presence of higher gradients of the deformation field. The constitutive response at the macroscopic level is obtained using variationally consistent homogenization (Larson et al. in Int J Numer Method Eng 81(13):1659–1686, 2010. doi: 10.1002/nme.2747). This approach allows to treat transient microscale problems on a representative volume element which has a finite size, i.e., the scales are not clearly separated. Full details of the implementation are provided. A series of numerical examples compares the homogenization results to single-scale formulations which fully resolve all microstructural features.

Keywords

First-order homogenization Coupled problem Transient microscale 

Notes

Acknowledgements

The authors gratefully acknowledge the support by the German Research Foundation (DFG) under Grant STE 544/48.

References

  1. 1.
    Larsson, F., Runesson, K., Su, F.: Variationally consistent computational homogenization of transient heat flow. Int. J. Numer. Method. Eng. 81(13), 1659–1686 (2010). doi: 10.1002/nme.2747 MathSciNetMATHGoogle Scholar
  2. 2.
    Aifantis, E.C.: On the problem of diffusion in solids. Acta Mech. 37(3), 265–296 (1980). doi: 10.1007/BF01202949 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Kojic, M., Milosevic, M., Kojic, N., Isailovic, V., Petrovic, D., Filipovic, N., Ferrari, M., Ziemys, A.: Transport phenomena: computational models for convective and diffusive transport in capillaries and tissue. In: De, S., Hwang, W., Kuhl, E. (eds.) Multiscale Modeling in Biomechanics and Mechanobiology, pp. 131–156. Springer, London (2015). doi: 10.1007/978-1-4471-6599-6_7 Google Scholar
  4. 4.
    Ubachs, R., Schreurs, P., Geers, M.: A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. J. Mech. Phys. Solids 52(8), 1763–1792 (2004). doi: 10.1016/j.jmps.2004.02.002 CrossRefMATHGoogle Scholar
  5. 5.
    Salvadori, A., Bosco, E., Grazioli, D.: A computational homogenization approach for li-ion battery cells: part 1 - formulation. J. Mech. Phys. Solids 65, 114–137 (2014). doi: 10.1016/j.jmps.2013.08.010 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRefGoogle Scholar
  7. 7.
    Di Leo, C.V., Anand, L.: Hydrogen in metals: a coupled theory for species diffusion and large elastic-plastic deformations. Int. J. Plast. 43, 42–69 (2013). doi: 10.1016/j.ijplas.2012.11.005 CrossRefGoogle Scholar
  8. 8.
    Di Leo, C.V., Rejovitzky, E., Anand, L.: A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014). doi: 10.1016/j.jmps.2014.05.001 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhao, Y., Stein, P., Xu, B.-X.: Isogeometric analysis of mechanically coupled Cahn-Hilliard phase segregation in hyperelastic electrodes of li-ion batteries. Comput. Methods Appl. Mech. Eng. 297, 325–347 (2015). doi: 10.1016/j.cma.2015.09.008 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Miehe, C., Dal, H., Schänzel, L.-M., Raina, A.: A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int. J. Numer. Method. Eng. 106, 683–711 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155(1), 181–192 (1998). doi: 10.1016/S0045-7825(97)00139-4
  12. 12.
    Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro–macro modeling of heterogeneous materials. Comput. Mech. 27(1), 37–48 (2001). doi: 10.1007/s004660000212 CrossRefMATHGoogle Scholar
  13. 13.
    Miehe, C., Koch, A.: Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch. Appl. Mech. 72(4), 300–317 (2002). doi: 10.1007/s00419-002-0212-2 CrossRefMATHGoogle Scholar
  14. 14.
    Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192(5–6), 559–591 (2003). doi: 10.1016/S0045-7825(02)00564-9 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from reuss’ to voigt’s bound. Appl. Mech. Rev. 68(5), 050801 (2016)CrossRefGoogle Scholar
  16. 16.
    Özdemir, I., Brekelmans, W.A.M., Geers, M.G.D.: Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Method. Eng. 73(2), 185–204 (2008). doi: 10.1002/nme.2068 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Özdemir, I., Brekelmans, W., Geers, M.: Computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Eng. 198(3–4), 602–613 (2008). doi: 10.1016/j.cma.2008.09.008 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Temizer, I., Wriggers, P.: Homogenization in finite thermoelasticity. J. Mech. Phys. Solids 59(2), 344–372 (2011). doi: 10.1016/j.jmps.2010.10.004 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Su, F., Larsson, F., Runesson, K.: Computational homogenization of coupled consolidation problems in micro-heterogeneous porous media. Int. J. Numer. Method. Eng. 88(11), 1198–1218 (2011). doi: 10.1002/nme.3221 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sýkora, J., Krejčí, T., Kruis, J., Šejnoha, M.: Computational homogenization of non-stationary transport processes in masonry structures. J. Comput. Appl. Math. 236 (18) (2012) 4745 – 4755, FEMTEC 2011: 3rd International Conference on Computational Methods in Engineering and Science, May 9–13, 2011. doi: 10.1016/j.cam.2012.02.031
  21. 21.
    Pham, K., Kouznetsova, V., Geers, M.: Transient computational homogenization for heterogeneous materials under dynamic excitation. J. Mech. Phys. Solids 61(11), 2125–2146 (2013). doi: 10.1016/j.jmps.2013.07.005 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Runesson, K., Ekh, M., Larsson, F.: Computational homogenization of mesoscale gradient viscoplasticity, Comput. Methods Appl. Mech. Eng. (2017)—Accepted for publication. doi: 10.1016/j.cma.2016.11.032
  23. 23.
    Kaessmair, S., Steinmann, P.: Comparative computational analysis of the Cahn–Hilliard equation with emphasis on C1-continuous methods. J. Comput. Phys. 322, 783–803 (2016). doi: 10.1016/j.jcp.2016.07.005 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Miehe, C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput. Methods Appl. Mech. Eng. 134(3), 223–240, (1996). doi: 10.1016/0045-7825(96)01019-5. http://www.sciencedirect.com/science/article/pii/0045782596010195
  26. 26.
    Kouznetsova, V., Geers, M., Brekelmans, W.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004). doi: 10.1016/j.cma.2003.12.073 CrossRefMATHGoogle Scholar
  27. 27.
    Temizer, I., Wriggers, P.: On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput. Methods Appl. Mech. Eng. 198(3–4), 495–510 (2008). doi: 10.1016/j.cma.2008.08.018 MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008). doi: 10.1016/j.cma.2008.05.003
  29. 29.
    Miehe, C., Mauthe, S., Ulmer, H.: Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn–Hilliard-type and standard diffusion in elastic solids. Int. J. Numer. Method. Eng. 99(10), 737–762 (2014). doi: 10.1002/nme.4700 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Lu, S., Pister, K.S.: Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int. J. Solids Struct. 11(7–8), 927–934 (1975)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Chair of Applied MechanicsFriedrich–Alexander Universität Erlangen–NürnbergErlangenGermany

Personalised recommendations