Advertisement

Archive of Applied Mechanics

, Volume 88, Issue 1–2, pp 121–140 | Cite as

Engineering analysis with CAD-based macroelements

Special

Abstract

Older and contemporary CAD-based interpolations, either for surfaces or for volume blocks, are capable of creating sets of basis functions on which finite-element (Galerkin–Ritz) and global collocation procedures can be supported. For some of these interpolations, this paper investigates the quality of the relevant numerical solution in several 2D and 3D engineering problems. It is shown that the global character of all these CAD interpolations ensures excellent numerical solution, although somewhere the boundary may be slightly violated. The study deals with several benchmark tests that span a large part in the spectrum of engineering analysis, from potential problems (Poisson equation-electrostatics and acoustics) to elasticity ones (beam in torsion, plate bending: statics and dynamics).

Keywords

Finite element Collocation CAD Isogeometric Boundary value problem Eigenanalysis 

References

  1. 1.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Coons, S.A.: Surfaces for computer-aided design of space forms, Technical Report MIT/LCS/TR-41, Massachusetts Institute of Technology, Cambridge (1967). http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-041.pdf
  4. 4.
    Kanarachos, A., Deriziotis, D.: On the solution of Laplace and wave propagation problems using "C-elements". Finite Elem. Anal. Des. 5(2), 97–109 (1989)CrossRefMATHGoogle Scholar
  5. 5.
    Kanarachos, A., Provatidis, C., Deriziotis, D., Photeas, N.: A new approach of the FEM analysis of two-dimensional elastic structures using global (Coons’) interpolation functions, In: Wunderlich, W. (ed.) CD Proceedings European Conference on Computational Mechanics (ECCM’99): (Paper 763.pdf: pp. 1–19), Munich, 28 Aug–3 Sept 1999. http://users.ntua.gr/cprovat/yliko/763.pdf
  6. 6.
    Provatidis, C.G.: A review on attempts towards CAD/CAE integration using macroelements. Comput. Res. 1(3), 61–84 (2013)Google Scholar
  7. 7.
    Gordon, W.: Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8(1), 158–177 (1969)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gordon, W.: Spline-blended surface interpolation through curve networks. J. Math. Mech. 18, 931–952 (1969). http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1969/18/18068
  9. 9.
    Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cavendish, J.C., Gordon, W.J., Hall, C.A.: Ritz-Galerkin approximations in blending function spaces. Numer. Math. 26(2), 155–178 (1976)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cavendish, J.C., Gordon, W.J., Hall, C.A.: Substructured macro elements based on locally blended interpolation. Int. J. Numer. Methods Eng. 11(9), 1405–1421 (1977)CrossRefMATHGoogle Scholar
  12. 12.
    Cavendish, J.C., Hall, C.A.: A new class of transitional blended finite elements for the analysis of solid structures. Int. J. Numer. Methods Eng. 20, 241–253 (1984)CrossRefMATHGoogle Scholar
  13. 13.
    Gordon, W.J., Thiel, L.C.: Transfinite mappings and their application to grid generation. Appl. Math. Comput. 10–11, 171–233 (1982)MathSciNetMATHGoogle Scholar
  14. 14.
    Barnhill, R., Birkhoff, G., Gordon, W.: Smooth interpolation in triangles. J. Approx. Theory 8(2), 114–128 (1973)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    El-Zafrany, A., Cookson, R.A.: Derivation of Lagrangian and Hermitian shape functions for quadrilateral elements. Int. J. Numer. Methods Eng. 23(10), 1939–1958 (1986a)CrossRefMATHGoogle Scholar
  16. 16.
    El-Zafrany, A., Cookson, R.A.: Derivation of Lagrangian and Hermitian shape functions for triangular elements. Int. J. Numer. Methods Eng. 23(2), 275–285 (1986b)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Provatidis, C., Kanarachos, A.: Performance of a macro-FEM approach using global interpolation (Coons’) functions in axisymmetric potential problems. Comput. Struct. 79, 1769–1779 (2001)CrossRefGoogle Scholar
  18. 18.
    Provatidis, C.G.: Bézier versus Lagrange polynomials-based finite element analysis of 2-D potential problems. Adv. Eng. Softw. 73, 22–34 (2014)CrossRefGoogle Scholar
  19. 19.
    Versprille, K.J.: Computer-Aided Design Applications of the Rational B-Spline Approximation Form. Doctoral Dissertation, Syracuse University, Department of Electrical Engineering and Computer Science (1975). http://surface.syr.edu/eecs_etd/262
  20. 20.
    Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4, 45–99 and 112–141 (1946)Google Scholar
  21. 21.
    De Boor, C.: On calculating with B-splines. J. Approx. Theory 6(1), 50–62 (1972)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    De Boor, C.: The method of projections as applied to the numerical solutions of two-point boundary value problems using cubic splines, Ph.D. Thesis, University of Michigan (1966). ftp://ftp.cs.wisc.edu/Approx/
  23. 23.
    Höllig, K.: Finite Element Methods with B-splines. SIAMD, Philadelphia (2003)CrossRefMATHGoogle Scholar
  24. 24.
    Piegl, L.: On NURBS: a survey. IEEE Comput. Graph. Appl. 11(1), 55–71 (1991)CrossRefGoogle Scholar
  25. 25.
    Piegl, L., Tiller, W.: A menagerie of rational B-splines circles. IEEE Comput. Graph. Appl. 9(5), 48–56 (1989)CrossRefGoogle Scholar
  26. 26.
    Provatidis, C.G.: Coons-patch macroelements in two-dimensional parabolic problems. Appl. Math. Model. 30(4), 319–351 (2006)CrossRefMATHGoogle Scholar
  27. 27.
    Provatidis, C.G.: Two-dimensional elastostatic analysis using Coons-Gordon interpolation. Meccanica 47(4), 951–967 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Provatidis, C.G.: Analysis of box-like structures using 3-D Coons’ interpolation. Commun. Numer. Methods Eng. 21(8), 443–456 (2005)CrossRefMATHGoogle Scholar
  29. 29.
    Provatidis, C.G.: Free vibration analysis of elastic rods using global collocation. Arch. Appl. Mech. 78(4), 241–250 (2008)CrossRefMATHGoogle Scholar
  30. 30.
    Provatidis, C.G., Ioannou, K.S.: Static analysis of two-dimensional elastic structures using global collocation. Arch. Appl. Mech. 80(4), 389–400 (2010)CrossRefMATHGoogle Scholar
  31. 31.
    Dimitriou, V.: Adaptive Finite elements and related meshes. Doctoral Dissertation, National Technical University of Athens, School of Mechanical Engineering (2004) (advisor: prof. A. Kanarachos)Google Scholar
  32. 32.
    Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, London (1977)MATHGoogle Scholar
  33. 33.
    Szabo, B., Babuska, I.: Finite Element Analysis. Wiley, New York (1991)MATHGoogle Scholar
  34. 34.
    Provatidis, C., Angelidis, D.: Performance of Coons’ macroelements in plate bending analysis. Int. J. Comput. Methods Eng. Sci. Mech. 15, 110–125 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Schramm, U., Pilkey, W.D.: The coupling of geometric descriptions and finite elements using NURBs—a study in shape optimization. Finite Elem. Anal. Des. 15, 11–34 (1993)CrossRefMATHGoogle Scholar
  36. 36.
    Cabral, J.J.S.P., Wrobel, L.C., Brebbia, C.A.: A BEM formulation using B-splines: I-uniform blending functions. Eng. Anal. Bound. Elem. 7(3), 136–144 (1990)CrossRefGoogle Scholar
  37. 37.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I, 1st English edn. InterScience, New York (translated and revised from the German original) (1966)Google Scholar
  38. 38.
    Bogner, F.K., Fox, R.L., Schmit, L.A. Jr.: The generation of inter-element compatible stiffness and mass matrices by use of interpolation formulas. In: Proceedings of 1st Conference on Matrix Methods in Structural Mechanics, Ohio, pp. 397–443 (1965)Google Scholar
  39. 39.
    Melosh, R.J.: A stiffness matrix for the analysis of thin plates in bending. J. Aeronaut. Sci. 28(1), 34–42 (1965)MathSciNetMATHGoogle Scholar
  40. 40.
    Carey, G.F., Oden, J.T.: Finite Elements: A Second Course, vol. II. Prentice-Hall, Englewood Cliffs (1983)MATHGoogle Scholar
  41. 41.
    Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, Singapore (1959). (International edition)MATHGoogle Scholar
  42. 42.
    Provatidis, C.: Finite element analysis of structures using \(\text{ C }^{1}\)-continuous cubic B-splines or equivalent Hermite elements. J. Struct. 2014, 9 (2014). doi: 10.1155/2014/754561. (Article ID 754561)Google Scholar
  43. 43.
    Provatidis, C.G.: B-splines collocation for plate bending eigenanalysis. J. Mech. Mater. Struct. 12(4), 353–371 (2017)Google Scholar
  44. 44.
    Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand, New York (1979)Google Scholar
  45. 45.
    Leissa, A.W.: The free vibration of rectangular plates. J. Sound Vib. 31(2), 257–293 (1973)CrossRefMATHGoogle Scholar
  46. 46.
    Gorman, D.J.: Free vibration analysis of the completely free rectangular plate by the method of superposition. J. Sound Vib. 57(3), 437–447 (1978)CrossRefMATHGoogle Scholar
  47. 47.
    Rayleigh, J.W.S.: The Theory of Sound, vol. 2, 2nd edn. Dover Publications, New York (1945)MATHGoogle Scholar
  48. 48.
    Angelidis, D.: Development of Coons macroelements for the static analysis of thin plates, MSc Thesis, School of Mechanical Engineering, NTUA (2005) (supervised by prof. C. Provatidis)Google Scholar
  49. 49.
    Higuchi, F., Gofuku, S., Maekawa, T., Mukundan, H., Patrikalakis, N.M.: Approximation of involute curves for CAD-system processing. Eng. Comput. 23(3), 207–214 (2007)CrossRefGoogle Scholar
  50. 50.
    Provatidis, C.G.: CAD-based collocation eigenanalysis of 2-D elastic structures. Comput. Struct. 182, 55–73 (2017). doi: 10.1016/j.compstruc.2016.11.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Technical University of AthensZografouGreece

Personalised recommendations