Archive of Applied Mechanics

, Volume 88, Issue 1–2, pp 39–49 | Cite as

Analytical solutions for the minimum weight design of trusses by cylindrical algebraic decomposition

  • A. E. Charalampakis
  • I. Chatzigiannelis


In this study, a method for the analytical evaluation of globally optimal solutions for the minimum weight design of trusses is presented. The basis of the methodology is the cylindrical algebraic decomposition algorithm, in tandem with powerful symbolic computation for the discovery of stationary points. Certain final answers to well-known benchmark problems are produced, while future improvements in both the algorithm implementation and the computer capabilities may allow the solution of even more difficult problems. To the best of our knowledge, no similar attempt can be found in the literature.


Truss weight minimization Analytical methods Cylindrical algebraic decomposition 


  1. 1.
    Feury, C., Geradin, M.: Optimality criteria and mathematical programming in structural weight optimization. Comput. Struct. 8(1), 7–17 (1978)CrossRefMATHGoogle Scholar
  2. 2.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. Lect. Notes Comput. Sci. 33, 134–183 (1975)CrossRefGoogle Scholar
  4. 4.
    Strzeboński, A.: Solving systems of strict polynomial inequalities. J. Symb. Comput. 29, 471–480 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brown, C.W.: QEPCAD B—a program for computing with semi-algebraic sets. Sigsam Bull. 37(4), 97–108 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. Sigsam Bull. 31(2), 2–9 (1997)CrossRefGoogle Scholar
  7. 7.
    Collins, G.E.: Quantifier Elimination by cylindrical algebraic decomposition—twenty years of progress. In: Caviness, B.F., Johnson, J.R. (eds.) Texts and Monographs in Symbolic Computation, pp. 8–23. Springer, New York (1998)Google Scholar
  8. 8.
    Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for boolean combinations. Proc. ISSAC 13, 125–132 (2013)MathSciNetMATHGoogle Scholar
  9. 9.
    Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using cylindrical algebraic decomposition. In: Proceedings of 44th IEEE Conference on Decision and Control, pp. 3735–3740 (2005)Google Scholar
  10. 10.
    Constrained Optimization. Wolfram Mathematica \(\textregistered \) Tutorial Collection. Extracted on 20/11/2016
  11. 11.
    Tong, W.H., Jiang, J.S., Liu, G.R.: Solution existence of the optimization problem of truss structures with frequency constraints. Int. J. Solids Struct. 37(30), 4043–4060 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Zuo, W., Bai, J., Li, B.: A hybrid OC-GA approach for fast and global truss optimization with frequency constraints. Appl. Soft Comput. 14, 528–535 (2014)CrossRefGoogle Scholar
  13. 13.
    Ray, T., Saini, P.: Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng. Optim. 33(6), 735–748 (2001)CrossRefGoogle Scholar
  14. 14.
    Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7(4), 386–396 (2003)CrossRefGoogle Scholar
  15. 15.
    Hernendez, S.: Multiobjective structural optimization. In: Kodiyalam, S., Saxena, M. (eds.) Geometry and Optimization Techniques for Structural Design, pp. 341–362. Elsevier, Amsterdam (1994)Google Scholar
  16. 16.
    Liu, H., Zixing, C., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10, 629–640 (2010)CrossRefGoogle Scholar
  17. 17.
    Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings of ISSAC ’07, pp. 54–60. ACM (2007)Google Scholar
  18. 18.
    Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82, 781–798 (2004)CrossRefGoogle Scholar
  19. 19.
    Sonmez, M.: Articial bee colony algorithm for optimization of truss structures. Appl. Soft Comput. 11, 2406–2418 (2011)CrossRefGoogle Scholar
  20. 20.
    Lamberti, L.: An efficient simulated annealing algorithm for design optimization of truss structures. Comput. Struct. 86, 1936–1953 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Technical University of AthensAthensGreece

Personalised recommendations