Advertisement

Archive of Applied Mechanics

, Volume 88, Issue 1–2, pp 83–95 | Cite as

Buckling analysis of thick plates on biparametric elastic foundation: a MAEM solution

  • Aristophanes J. Yiotis
  • John T. Katsikadelis
Special

Abstract

The meshless analog equation method, a purely meshless method, is applied to the buckling analysis of moderately thick plates described by Mindlin’s theory and resting on two-parameter elastic foundation (Pasternak type). The method is based on the concept of the analog equation, which converts the three governing second-order partial differential equations (PDEs) in terms of the three plate displacements (transverse displacement and two rotations) into three substitute equations, the analog equations. The analog equations constitute a set of three uncoupled Poisson’s equations under fictitious sources, which are approximated by multi-quadric radial basis functions (MQ-RBFs) series. This enables the direct integration of the analog equations and allows the representation of the sought solution by new RBFs series. These RBFs approximate accurately not only the displacements but also their derivatives involved in the governing equations. Then, inserting the approximate solution in the original PDEs and in the associated boundary conditions (BCs) and collocating at mesh-free nodal points, a generalized eigenvalue problem is obtained, which allows the evaluation of the buckling load and the buckling modes. The studied examples demonstrate the efficiency of the presented method that is its ability to solve accurately and in a straightforward way difficult engineering problems.

Keywords

Buckling Meshless analog equation method (MAEM) Thick plates Pasternak-type elastic foundation Radial basis functions series 

References

  1. 1.
    Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. ASME 31, 491–498 (1964)CrossRefMATHGoogle Scholar
  2. 2.
    Selvadurai, A.P.S.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, New York (1979)Google Scholar
  3. 3.
    Katsikadelis, J.T.: The Boundary Element Method for Plate Analysis. Academic Press, Elsevier, Oxford (2014)MATHGoogle Scholar
  4. 4.
    Xiang, Y., Kitipornchai, S., Liew, K.M.: Buckling and vibration of thick laminates on Pasternak foundatiion. J. Eng. Mech. ASCE 122(10), 54–63 (1996)CrossRefGoogle Scholar
  5. 5.
    Irschik, H.: Membrane-type eigenmodes of Mindlin plates. Acta Mech. 55, 1–20 (1985)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Akhavan, H., Hashemi Hosseini, Sh, Taher Damavandi Rokni, H., Alibeigloo, A., Vahabi, Sh: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis. Comp. Mater. Sci. 44, 968–978 (2009)CrossRefGoogle Scholar
  7. 7.
    Akhavan, H., Hashemi Hosseini, Sh, Taher Damavandi Rokni, H., Alibeigloo, A., Vahabi, Sh: Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis. Comp. Mater. Sci. 44, 951–961 (2009)CrossRefGoogle Scholar
  8. 8.
    Lam, K.Y., Wang, C.M., He, X.Q.: Canonical exact solutions for Levy-plates on two-parameter foundation using Green’s functions. Eng. Struct. 22, 364–378 (2000)CrossRefGoogle Scholar
  9. 9.
    Matsunaga, H.: Vibration and stability of thick plates on elastic foundations. J. Eng. Mech. ASCE 126, 27–34 (2000)CrossRefGoogle Scholar
  10. 10.
    Huu-Tai, Thai, Minwo, Park, Dong-Ho, Choi: A simple refined theory for bending, buckling and vibration of thick plates on elastic foundation. Int. J. Mech. Sci. 73, 40–52 (2013)CrossRefGoogle Scholar
  11. 11.
    Dehghan, M., Nejad, M.Z., Moosaie, A.: An effective combination of finite element and differential quadrature method for analyzing of plates partially resting on elastic foundation. Eng. Solid Mech. 4, 201–218 (2016)CrossRefGoogle Scholar
  12. 12.
    Wen, P.H.: The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications. Int. J. Solids Struct. 45, 1032–1050 (2008)CrossRefMATHGoogle Scholar
  13. 13.
    Katsikadelis, J.T., Yiotis, A.J.: A new boundary element solution of thick plates modelled by Reissner’s theory. Eng. Anal. Bound. Elem. 12, 65–74 (1993)CrossRefGoogle Scholar
  14. 14.
    Fadhil, S., El-Zafrany, A.: Boundary element analysis of thick Reissner plates on two-parameter foundation. Int. J. Solids Struct. 21, 2901–2917 (1994)CrossRefMATHGoogle Scholar
  15. 15.
    Providakis, C.P., Beskos, D.E.: Dynamic analysis of plates by boundary elements. Appl. Mech. Rev. ASME 52, 212–236 (1999)CrossRefGoogle Scholar
  16. 16.
    Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M.: Analysis of plates on Pasternak foundations by radial basis functions. Comput. Mech. 46, 791–803 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Han, J.B., Liew, K.M.: Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter-foundation. Int. J. Mech. Sci. 39, 977–989 (1997)CrossRefMATHGoogle Scholar
  18. 18.
    Civalek, O., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessel Pip. 84, 527–535 (2007)CrossRefGoogle Scholar
  19. 19.
    Kansa, E.J.: Highly accurate methods for solving elliptic partial differential equations. In: Brebbia, C.A., Divo, E., Poljak, D. (eds.) Boundary Elements XXVII, pp. 5–15. WIT Press, Southampton (2005)Google Scholar
  20. 20.
    Katsikadelis, J.T.: The meshless analog equation method. A new highly accurate truly mesh-free method for solving partial differential equations. In: Brebbia, C.A., Katsikadelis, J.T. (eds.) Boundary Elements and Other Mesh Reduction Methods XXVIII, pp. 13–22. WIT Press, Southampton (2006)CrossRefGoogle Scholar
  21. 21.
    Katsikadelis, J.T.: A generalized Ritz method for partial differential equations in domains of arbitrary geometry using global shape functions. Eng. Anal. Bound. Elem. 32(5), 353–367 (2008)CrossRefMATHGoogle Scholar
  22. 22.
    Katsikadelis, J.T.: The 2D elastostatic problem in inhomogeneous anisotropic bodies by the meshless analog equation method MAEM. Eng. Anal. Bound. Elem. 32, 997–1005 (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Katsikadelis, J.T.: The meshless analog equation method: I. solution of elliptic partial differential equations. Arch. Appl. Mech. 79, 557–578 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Yiotis, A.J., Katsikadelis, J.T.: The meshless analog equation method for the solution of plate problems. In: Proceedings of the 6th GRACM International Congress on Computational Mechanics, Thessaloniki, Greece, 19–21 June (2008)Google Scholar
  25. 25.
    Yiotis, A.J., Katsikadelis, J.T.: Thick plates on biparametric elastic foundation. In: Beskos, D.E., Stavroulakis, G.E. (eds.) Proceedings of the 10th HSTAM International Congress on Mechanics, Abstract p. 189, Full paper CD-ROM, Chania, Crete, Greece, 25–27 May (2013)Google Scholar
  26. 26.
    Herrmann, G., Armenakas, A.E.: Vibrations and stability of thick plates under initial stress. Trans. ASCE 127, 458–487 (1962)Google Scholar
  27. 27.
    Brunelle, E.J., Robertson, S.R.: Initially stressed Mindlin plates. AIAA J. 12(8), 1036–1044 (2006)CrossRefMATHGoogle Scholar
  28. 28.
    Balas, J., Sladek, V., Sladek, J.: The boundary integral equation method for plates resting on a two-parameter foundation. ZAMM 64, 137–146 (1984)CrossRefMATHGoogle Scholar
  29. 29.
    Katsikadelis, J.T., Kallivokas, L.F.: Plates on biparametric elastic foundation by BDIE method. J. Eng. Mech. 114(5), 847–875 (1988)CrossRefGoogle Scholar
  30. 30.
    Sarra, S.A.: Integrated multiquadric radial basis function methods. Comput. Math. Appl. 5, 1283–1296 (2006)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Yiotis, A.J., Katsikadelis, J.T.: Analysis of cylindrical shell panels. a meshless solution. Eng. Anal. Bound. Elem. 37, 928–935 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Huang, C.-S., Lee, C.-F., Cheng, A.H.G.: Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng. Anal. Bound. Elem. 31, 614–623 (2007)CrossRefMATHGoogle Scholar
  33. 33.
    Yiotis, A.J., Katsikadelis, J.T.: Buckling of cylindrical shell panels: a MAEM solution. Arch. Appl. Mech. 85(9), 1545–1557 (2015)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Aristophanes J. Yiotis
    • 1
  • John T. Katsikadelis
    • 1
  1. 1.School of Civil EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations