Alexandrov, S., Jeng, Y.-R.: An efficient method for the identification of the modified Cockroft–Latham fracture criterion at elevated temperature. Arch. Appl. Mech. 83, 1801–1804 (2013)
Article
MATH
Google Scholar
Bobyr, M., Altenbach, H., Khalimon, O.: On the application of the continuum damage mechanics to multi-axial low-cyclic damage. Arch. Appl. Mech. 85, 455–468 (2015)
Article
Google Scholar
Šebek, F., Kubík, P., Hůlka, J., Petruška, J.: Strain hardening exponent role in phenomenological ductile fracture criteria. Eur. J. Mech. A/Solids 57, 149–164 (2016)
MathSciNet
Article
Google Scholar
Mirzajanzadeh, M., Canadinc, D.: A microstructure-sensitive model for simulating the impact response of a high-manganese austenitic steel. J. Eng. Mater. Technol. 138, 041004-1–041004-14 (2016)
Article
Google Scholar
Abendroth, M., Kuna, M.: Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng. Fract. Mech. 73, 710–725 (2006)
Article
Google Scholar
Bridgman, P.W.: Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure. Harvard University Press, Cambridge (1964)
Book
MATH
Google Scholar
Zhang, Z.L., Hauge, M., Ødegård, J., Thaulow, C.: Determining material true stress–strain curve from tensile specimens with rectangular cross-section. Int. J. Solids Struct. 36, 3497–3516 (1999)
Article
MATH
Google Scholar
Mirone, G.: A new model for the elastoplastic characterization and the stress–strain determination on the necking section of a tensile specimen. Int. J. Solids Struct. 41, 3545–3564 (2004)
Article
MATH
Google Scholar
Joun, MS., Eom, J.G., Lee, M. Ch.: A new method for acquiring true stress–strain curves over a large range of strains using a tensile test and finite element method. Mech. Mater. 40, 586–593 (2008)
Koc, P., Štok, B.: Computer-aided identification of the yield curve of a sheet metal after onset of necking. Comput. Mater. Sci. 31, 155–168 (2004)
Article
Google Scholar
Kamaya, M., Kawakubo, M.: A procedure for determining the true stress–strain curve over a large range of strains using digital image correlation and finite element analysis. Mech. Mater. 43, 243–253 (2011)
Article
Google Scholar
Lüders, W.: Über die Äueßerung der Elasticität an stahlartigen Eisenstäben und Stahlstäben, und über eine beim Biegen solcher Stäbe beobachtete Molecularbewegung. Polytech. J. 155, 18–22 (1860)
Google Scholar
Kim, J.-H., Serpantié, A., Barlat, F., Pierron, F., Lee, M.-G.: Characterization of the post-necking hardening behaviour using the virtual fields method. Int. J. Solids Struct. 50, 3829–3842 (2013)
Article
Google Scholar
Landron, C., Maire, E., Bouaziz, O., Adrien, J., Lecarme, L., Bareggi, A.: Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater. 59, 7564–7573 (2011)
Article
Google Scholar
Kõrgesaar, M., Romanoff, J.: Influence of softening on fracture propagation in large-scale shell structures. Int. J. Solids Struct. 50, 3911–3921 (2013)
Article
Google Scholar
Longère, P., Dragon, A.: Description of shear failure in ductile metals via back stress concept linked to damage-microporosity softening. Eng. Fract. Mech. 98, 92–108 (2013)
Article
Google Scholar
Zhou, J., Gao, X., Sobotka, J.C., Webler, B.A., Cockeram, B.V.: On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions. Int. J. Solids Struct. 51, 3273–3291 (2014)
Article
Google Scholar
Morin, L., Kondo, D., Leblond, J.-B.: Numerical assessment, implementation and application of an extended Gurson model accounting for void size effects. Eur. J. Mech. A/Solids 51, 183–192 (2015)
MathSciNet
Article
Google Scholar
Nurcheshmeh, M., Green, D.E.: Prediction of forming limit curves for nonlinear loading paths using quadratic and non-quadratic yield criteria and variable imperfection factor. Mater. Des. 91, 248–255 (2016)
Article
Google Scholar
Malcher, L., Reis, F.J.P., Andrade Pires, F.M., César de Sá, J.M.A.: Evaluation of shear mechanisms and influence of the calibration point on the numerical results of the GTN model. Int. J. Mech. Sci. 75, 407–422 (2013)
Article
Google Scholar
Khadyko, M., Dumoulin, S., Børvik, T., Hopperstad, O.S.: An experimental-numerical method to determine the work-hardening of anisotropic ductile materials at large strains. Int. J. Mech. Sci. 88, 25–36 (2014)
Article
Google Scholar
Voce, E.: A practical strain-hardening function. Metallurgia 51, 219–226 (1955)
Google Scholar
Abbassi, F., Belhadj, T., Mistou, S., Zghal, A.: Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Mater. Des. 45, 605–615 (2013)
Article
Google Scholar
Roth, Ch.C., Mohr, D.: Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modelling. Int. J. Plast. 56, 19–44 (2014)