Advertisement

Archive of Applied Mechanics

, Volume 87, Issue 6, pp 1061–1075 | Cite as

Prediction of fatigue crack growth retardation using a cyclic cohesive zone model

  • Huan Li
  • Chun Li
  • Huang Yuan
Original

Abstract

Cohesive zone modeling of fatigue crack growth retardation in aerospace titanium alloy Ti–6Al–4V subjected to a single overload during constant amplitude is presented in this work. The cyclic softening behavior of the bulk material is simulated according to the Ohno–Wang’s cyclic plasticity theory. The fracture process zone is represented by an irreversible cohesive law which governs the material separation of fatigue crack. The material degradation mechanism is described by the gradual reduction of the unloading cohesive stiffness after each loading cycle. The fatigue crack growth behaviors are examined using the proposed cohesive model under both constant and variable amplitude loadings. The computational results are verified according to the experimental data, which confirm that the present model can be applied to predict the transient retardation in fatigue crack growth rate of the Ti–6Al–4V alloy accurately.

Keywords

Irreversible cohesive law Crack growth retardation Overload Fatigue damage Cyclic plasticity 

Notes

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (No. 11502204) and research start-up fund of Northwestern Polytechnical University (No. G2015KY0303) are acknowledged.

References

  1. 1.
    Paris, P.C., Gomez, M.P., Anderson, W.P.: A rational analytic theory of fatigue. Trend Eng. 13, 9–14 (1961)Google Scholar
  2. 2.
    Kondo, Y.: Fatigue under variable amplitude loading. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Comprehensive Structural Integrity, pp. 263–279. Pergamon, Oxford (2003)Google Scholar
  3. 3.
    Newman, J.C.: Modeling of fatigue crack growth: numerical models. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Comprehensive Structural Integrity, pp. 209–220. Pergamon, Oxford (2003)CrossRefGoogle Scholar
  4. 4.
    Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
  5. 5.
    Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)CrossRefMATHGoogle Scholar
  6. 6.
    Yuan, H., Lin, G., Cornec, A.: Verification of a cohesive zone model for ductile fracture. J. Eng. Mater. Technol. 118, 192–200 (1996)CrossRefGoogle Scholar
  7. 7.
    Roy, Y.A., Dodds Jr., R.H.: Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements. Int. J. Fract. 110, 21–45 (2001)CrossRefGoogle Scholar
  8. 8.
    Scheider, I., Brocks, W.: Simulation of cup-cone fracture using the cohesive model. Eng. Fract. Mech. 70, 1943–1961 (2003)CrossRefGoogle Scholar
  9. 9.
    Wang, G., Li, S.F.: A penny-shaped cohesive crack model for material damage. Theor. Appl. Fract. Mech. 42, 303–316 (2004)CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Yuan, H.: Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods. Eng. Fract. Mech. 78, 544–558 (2011)CrossRefGoogle Scholar
  11. 11.
    Rashid, F.Md, Banerjee, A.: Implementation and validation of a triaxiality dependent cohesive model: experiments and simulations. Int. J. Fract. 181, 227–239 (2013)CrossRefGoogle Scholar
  12. 12.
    Schwalbe, K.-H., Scheider, I., Cornec, A.: Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures. Springer, Berlin (2012)Google Scholar
  13. 13.
    Park, K., Paulino, G.H.: Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl. Mech. Rev. 64, 060802 (2013)CrossRefGoogle Scholar
  14. 14.
    Kuna, M., Roth, S.: General remarks on cyclic cohesive zone models. Int. J. Fract. 196, 147–167 (2015)CrossRefGoogle Scholar
  15. 15.
    de Andres, A., Perez, J.L., Ortiz, M.: Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading. Int. J. Solids Struct. 36, 2231–2258 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Serebrinsky, S., Ortiz, M.: A hysteretic cohesive-law model of fatigue-crack nucleation. Scr. Mater. 53, 1193–1196 (2005)CrossRefGoogle Scholar
  17. 17.
    Roth, S., Hütter, G., Kuna, M.: Simulation of fatigue crack growth with a cyclic cohesive zone model. Int. J. Fract. 188, 23–45 (2014)CrossRefGoogle Scholar
  18. 18.
    Ural, A., Krishnan, V.R., Papoulia, K.D.: A cohesive zone model for fatigue crack growth allowing for crack retardation. Int. J. Solids Struct. 46, 2453–2462 (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Beaurepaire, P., Schuëller, G.I.: Modeling of the variability of fatigue crack growth using cohesive zone elements. Eng. Fract. Mech. 78, 2399–2413 (2011)CrossRefGoogle Scholar
  20. 20.
    Nguyen, O., Repetto, E.A., Ortiz, M., Radovitzky, R.A.: A cohesive model of fatigue crack growth. Int. J. Fract. 110, 351–369 (2001)CrossRefGoogle Scholar
  21. 21.
    Eliaš, J., Le, J.-L.: Modeling of mode-I fatigue crack growth in quasi-brittle structures under cyclic compression. Eng. Fract. Mech. 96, 26–36 (2012)CrossRefGoogle Scholar
  22. 22.
    Roe, K.L., Siegmund, T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70, 209–232 (2003)CrossRefGoogle Scholar
  23. 23.
    Maiti, S., Geubelle, P.H.: Cohesive modeling of fatigue crack retardation in polymers: crack closure effect. Eng. Fract. Mech. 73, 22–41 (2006)CrossRefGoogle Scholar
  24. 24.
    Jiang, H., Gao, X., Srivatsan, T.S.: Predicting the influence of overload and loading mode on fatigue crackgrowth: A numerical approach using irreversible cohesive elements. Finite Elem. Anal. Des. 45, 675–685 (2009)CrossRefGoogle Scholar
  25. 25.
    Zhang, M., Zhang, J., McDowell, D.L.: Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V. Int. J. Plast. 23, 1328–1348 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Ohno, N., Wang, J.: On modelling of kinematic hardening for ratcheting behaviour. Nucl. Eng. Des. 153, 205–212 (1995)CrossRefGoogle Scholar
  27. 27.
    Dunne, F., Petrinic, N.: Introduction to Computational Plasticity. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  28. 28.
    Kang, G., Dong, Y., Liu, Y., Jiang, H.: Macroscopic and microscopic investigations on uniaxial ratchetting of two-phase Ti–6Al–4V alloy. Mater. Charact. 92, 26–35 (2014)CrossRefGoogle Scholar
  29. 29.
    Paggi, M., Wriggers, P.: A nonlocal cohesive zone model for finite thickness interfaces-Part I: mathematical formulation and validation with molecular dynamics. Comput. Mater. Sci. 50, 1625–1633 (2011)CrossRefGoogle Scholar
  30. 30.
    Krull, H., Yuan, H.: Suggestions to the cohesive traction–separation law from atomistic simulations. Eng. Fract. Mech. 78, 525–533 (2011)CrossRefGoogle Scholar
  31. 31.
    Brocks, W.: Cohesive strength and separation energy as characteristic parameters of fracture toughness and their relation to micromechanics. SID 1, 233–243 (2005)Google Scholar
  32. 32.
    Brocks, W., Scheider, I., Schödel, M.: Simulation of crack extension in shell structures and prediction of residual strength. Arch. Appl. Mech. 76, 655–665 (2006)CrossRefMATHGoogle Scholar
  33. 33.
    Hutchinson, J.W.: Closing in on the crack tip. In: Willis, J.R. (ed.) IUTAM Symposium on Nonlinear Analysis of Fracture, pp. 81–91. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  34. 34.
    Allahverdizadeh, N., Gilioli, A., Manes, A., Giglio, M.: An experimental and numerical study for the damage characterization of a Ti–6Al–4V titanium alloy. Int. J. Mech. Sci. 93, 32–47 (2015)CrossRefGoogle Scholar
  35. 35.
    Li, H., Yuan, H., Li, X.: Assessment of low cycle fatigue crack growth under mixed-mode loading conditions by using acohesive zone model. Int. J. Fatigue 75, 39–50 (2015)CrossRefGoogle Scholar
  36. 36.
    Li, H., Chandra, N.: Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models. Int. J. Plast. 19, 849–882 (2003)CrossRefMATHGoogle Scholar
  37. 37.
    ABAQUS Version 6.11. User Subroutines Reference Manual. Dassault Systemes Simulia Corp., Providence (2011)Google Scholar
  38. 38.
    Korsunsky, A.M., et al.: Crack tip deformation fields and fatigue crack growth rates in Ti–6Al–4V. Int. J. Fatigue 31, 1771–1779 (2009)CrossRefGoogle Scholar
  39. 39.
    ASTM E 647-00: Standard Test Method for Measurement of Fatigue Crack Growth Rates (2000)Google Scholar
  40. 40.
    Liu, J., Xiang, C., Yuan, H.: Prediction of 3D small fatigue crack propagation in shot-peend specimens. Comput. Mater. Sci. 46, 566–571 (2009)CrossRefGoogle Scholar
  41. 41.
    Xu, Y., Yuan, H.: On the damage accumulation in the cyclic cohesive zone model for XFEM analysis of mixed-mode fatigue crack growth. Comput. Mater. Sci. 46, 579–585 (2009)CrossRefGoogle Scholar
  42. 42.
    Li, H., Yuan, H.: Cohesive zone modeling of low cycle fatigue cracks in cracked and notched specimens. Fatigue Fract. Eng. Mater. Struct. 36, 1246–1257 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Aerospace EngineeringTsinghua UniversityBeijingChina

Personalised recommendations