Advertisement

Archive of Applied Mechanics

, Volume 87, Issue 6, pp 1007–1018 | Cite as

Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink

  • Hulun Guo
  • Bin Liu
  • Yangyang Yu
  • Shuqian Cao
  • Yushu Chen
Original

Abstract

In this paper, an adaptive and passive galloping suppression of a suspended linear cable is investigated. The limit cycle oscillation (LCO) of cable due to nonlinear wind loading is effectively eliminated by a lightweight, easy-to-make attachment: nonlinear energy sink (NES). Analytical mechanism of LCO is explored by using harmonic balance method, implying that NES is valid for LCO suppression under any wind speed. Finally, the influences of mass ratio, damping, stiffness and location of NES on vibration suppression are highlighted in detail.

Keywords

Suspended cable Nonlinear energy sink Wind loading Galloping Vibration suppression 

Notes

Acknowledgements

This study is funded by the National Natural Science Foundation of China (Grant No. 11302145), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130032120035) and Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 15JCQNJC04900).

References

  1. 1.
    Sirohi, J., Mahadik, R.: Harvesting wind energy using a galloping piezoelectric beam. J. Vib. Acoust. 134(1), 011009 (2012)CrossRefGoogle Scholar
  2. 2.
    Den Hartog, J.P.: Transmission line vibration due to sleet. Trans. AIEE 4(51), 1074–1076 (1932)Google Scholar
  3. 3.
    Jones, K.F.: Coupled vertical and horizontal galloping. J. Eng. Mech. ASCE. 118(1), 92–107 (1992)CrossRefGoogle Scholar
  4. 4.
    Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1:2 internal resonance. J. Sound Vib. 214(5), 915–940 (1998)CrossRefGoogle Scholar
  5. 5.
    Yu, P., Desai, Y.M., Shah, A.H., Popplewell, N.: Three-degree-of-freedom model for galloping. Part I: formulation. J. Eng. Mech. ASCE. 119(12), 2404–2425 (1993)CrossRefGoogle Scholar
  6. 6.
    Yu, P., Desai, Y.M., Popplewell, N., Shah, A.H.: Three-degree-of-freedom model for galloping. Part II: solutions. J. Eng. Mech. ASCE. 119(12), 2426–2448 (1993)CrossRefGoogle Scholar
  7. 7.
    Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15), 1003–1014 (2009)CrossRefGoogle Scholar
  8. 8.
    Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1), 71–87 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yan, Z., Yan, Z., Li, Z., Tan, T.: Nonlinear galloping of internally resonant iced transmission lines considering eccentricity. J. Sound Vib. 331(15), 3599–3616 (2012)CrossRefGoogle Scholar
  10. 10.
    Guo, T., Kang, H., Wang, L., Zhao, Y.: A boundary modulation formulation for cable’s non-planar coupled dynamics under out-of-plane support motion. Arch. Appl. Mech. 86(4), 729–741 (2016)CrossRefGoogle Scholar
  11. 11.
    Gattulli, V.: Advanced control strategies in cable dynamics. Civ. Eng. Comput. Tools Techn. 11, 243–269 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Elcrat, A.R., Egbert, R.I.: Modelling and boundary control of conductor galloping. J Sound Vib. 161(2), 301–315 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    Lu, M.L., Popplewell, N., Shah, A.H., Chan, J.K.: Hybrid nutation damper for controlling galloping power lines. IEEE T Power Deliver. 22(1), 450–456 (2007)CrossRefGoogle Scholar
  14. 14.
    Hunt, J.C.R., Richards, D.J.W.: Overhead-line oscillations and the effect of aerodynamic dampers. P I Electr Eng. 116(11), 1869–1874 (1969)CrossRefGoogle Scholar
  15. 15.
    Richardson, A.S.: Dynamic damper for galloping conductors. Elect, World (1965)Google Scholar
  16. 16.
    Keutgen, R., Lilien, J.L.: A new damper to solve galloping on bundled lines. Theoretical background, laboratory and field results. IEEE Power Eng. Rev. 17(7), 51–51 (1997)Google Scholar
  17. 17.
    Qin, Z., Chen, Y., Zhan, X., Liu, B., Zhu, K.: Research on the galloping and anti-galloping of the transmission line. Int. J. Bifurcat. Chaos. 22(2), 1250038 (2012)CrossRefMATHGoogle Scholar
  18. 18.
    Vakakis, A.F., Gendelman, O.V.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, London (2009)Google Scholar
  19. 19.
    Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33(1), 87–102 (2003)CrossRefMATHGoogle Scholar
  20. 20.
    Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Health Monit. 13(1), 41–75 (2006)CrossRefGoogle Scholar
  21. 21.
    Gendelman, O.V., Bar, T.: Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Phys. D 239(3), 220–229 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Domany, E., Gendelman, O.V.: Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J Sound Vib. 332(21), 5489–5507 (2013)CrossRefGoogle Scholar
  23. 23.
    Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46(6), 1371–1394 (2008)CrossRefGoogle Scholar
  24. 24.
    Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45(3), 693–711 (2007)CrossRefGoogle Scholar
  25. 25.
    Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45(10), 2391–2400 (2007)CrossRefGoogle Scholar
  26. 26.
    Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50(3), 781–794 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhang, Y.W., Zang, J., Yang, T.Z., Fang, B., Wen, X.: Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink. Math. Probl. Eng. 2013, 348042 (2013)MathSciNetMATHGoogle Scholar
  29. 29.
    Weiss, M., Vaurigaud, B., Savadkoohi, A. T., Lamarque C.: Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment. MATEC Web of Conferences. EDP Sciences. 24 (2015)Google Scholar
  30. 30.
    Izzi, M., Caracoglia, L., Noè, S.: Investigating the use of targeted-energy-transfer devices for stay-cable vibration mitigation. Struct. Control Health Monit. 23(2), 315–332 (2016)CrossRefGoogle Scholar
  31. 31.
    Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A. 341(1626), 299–315 (1974)CrossRefGoogle Scholar
  32. 32.
    Al-Qassab, M., Nair, S.: Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass. J Sound Vib. 270(1), 191–206 (2004)CrossRefMATHGoogle Scholar
  33. 33.
    Arafat, H.N., Nayfeh, A.H.: Non-linear responses of suspended cables to primary resonance excitations. J Sound Vib. 266(2), 325–354 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hulun Guo
    • 1
    • 2
  • Bin Liu
    • 3
  • Yangyang Yu
    • 4
  • Shuqian Cao
    • 1
    • 2
  • Yushu Chen
    • 1
    • 2
  1. 1.Department of MechanicsTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Nonlinear Dynamics and ControlTianjinChina
  3. 3.China Electric Power Research InstituteBeijingChina
  4. 4.Renai College of Tianjin UniversityTianjinChina

Personalised recommendations