Skip to main content

Advertisement

Log in

Theoretical analysis of a piezoelectric ceramic tube polarized tangentially for hydraulic vibration energy harvesting

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A piezoelectric energy harvester, consisting of a long and thin lead zirconate titanate ceramic tube with tangential polarization, is proposed in this paper for scavenging vibration energy. This harvester operates in 3–3 mode while subjected to radial dynamic hydraulic pressure acting at the inner surface of the tube. Based on the linear piezoelectricity theory, the analytical solutions for the output power density of the device and their dependence upon the vibration frequency, the geometrical parameters of the tube, and the impedance of the load circuit are derived. The numerical results indicate the considerably enhanced performances by adjusting the thickness and radius of the ceramic tube. The stress in the ceramic is calculated to ensure that the applied force is within the operational range. The load impedance has a great effect on the performance of the harvester. A wideband energy harvester, which usually consisted of complex architectures in previous research works, is obtained in this pare by just adjusting the value of the load impedance. This opens up a new approach for us to design wideband energy harvesters with simple structures and thus small size, light weight and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chandrakasan, A., Amirtharajah, R., Goodman, J., Rabiner, W.: Trends in low power digital signal processing. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (1998 ISCAS ’98), Monterey, CA, pp 604–607 (1998)

  2. Davis, W.R., Zhang, N., Camera, K., Markovic, D., Smilkstein, T., Ammer, M.J., Brodersen, R.W.: A design environment for high-throughput low-power dedicated signal processing systems. IEEE J. Solid State Circuits 37, 420–431 (2002)

    Article  Google Scholar 

  3. Toprak, A., Tigli, O.: Piezoelectric energy harvesting: state-of-the-art and challenges. Appl. Phys. Lett. 1, 031104 (2014)

    Google Scholar 

  4. Roundy, S., Write, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  5. Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4, 28–36 (2005)

    Article  Google Scholar 

  6. Jiang, S.N., Li, X.F., Guo, S.H., Hu, Y.T., Yang, J.S., Jiang, Q.: Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Mater. Struct. 14, 769–774 (2005)

    Article  Google Scholar 

  7. Jiang, S.N., Hu, Y.T.: Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1463–1469 (2007)

    Article  Google Scholar 

  8. Lan, C.B., Qin, W.Y.: Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion. Appl. Phys. Lett. 105, 113901 (2014)

    Article  Google Scholar 

  9. El-hami, M., Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D., Ross, J.N.: Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A Phys. 92, 335–342 (2001)

    Article  Google Scholar 

  10. Marin, A., Bressers, S., Priya, S.: Multiple cell configuration electromagnetic vibration energy harvester. J. Phys. D Appl. Phys. 44, 295501–295511 (2011)

    Article  Google Scholar 

  11. Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara, T., Yano, K.: Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment. In: Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003 (ISLPED ’03), pp 193–198 (2003)

  12. Mitcheson, P.D., Green, T.C., Yeatman, E.M., Holmes, A.S.: Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13, 429–440 (2004)

    Article  Google Scholar 

  13. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004)

    Article  Google Scholar 

  14. Kim, D., Hewa-Kasakarage, N., Hall, N.A.: A theoretical and experimental comparison of 3–3 and 3–1 mode piezoelectric microelectromechanical systems (MEMS). Sens. Actuators A Phys. 219, 112–122 (2014)

    Article  Google Scholar 

  15. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–21 (2007)

    Article  Google Scholar 

  16. Zhou, L., Sun, J., Zheng, X.J., Deng, S.F., Zhao, J.H., Peng, S.T., Zhang, Y., Wang, X.Y., Cheng, H.B.: A model for the energy harvesting performance of shear mode piezoelectric cantilever. Sens. Actuators A Phys. 179, 185–192 (2012)

    Article  Google Scholar 

  17. Han, J., Hu, J., Wang, S.X., He, J.: A novel cylindrical torsional magnetoelectric composite based on \( d_{15}\) shear-mode response. J. Phys. D Appl. Phys. 48, 045001 (2015)

    Article  Google Scholar 

  18. Henderson, I.R.: Piezoelectric Ceramics: Principles and Applications. APC International Ltd., Pennsylvania (2002)

    Google Scholar 

  19. Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)

    MATH  Google Scholar 

  20. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  21. Le, K.C.: The theory of piezoelectric shells. J. Appl. Math. Mech. 50, 98–105 (1986)

    Article  MATH  Google Scholar 

  22. Li, P., Jin, F., Yang, J.S.: A piezoelectric energy harvester with increased bandwidth based on beam flexural vibrations in perpendicular directions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 2214–2218 (2013)

    Article  Google Scholar 

  23. Luan, G.D., Zhang, J.D., Wang, R.Q.: Piezoelectric Transducers and Arrays. Peking University Press, Beijing (2004)

    Google Scholar 

  24. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1. Wiley, New York (1973)

    Google Scholar 

  25. Holland, R., EerNisse, E.P.: Design of Resonant Piezoelectric Devices. MIT Press, Cambridge (1969)

    Google Scholar 

  26. Yang, J.S., Fang, H.Y.: Analysis of a rotating elastic beam with piezoelectric films as an angular rate sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 798–804 (2002)

    Article  Google Scholar 

  27. Okayasu, M., Otake, M., Bitoh, T., Mizuno, M.: Temperature dependence of the fatigue and mechanical properties of lead zirconate titanate piezoelectric ceramics. Int. J. Fatigue 31, 1254–1261 (2009)

    Article  Google Scholar 

  28. Ho, L.N., Nishikawa, H.: Copper-filled electrically conductive adhesives with enhanced shear strength. J. Mater. Eng. Perform. 23, 3371–3378 (2014)

    Article  Google Scholar 

  29. Xue, H., Hu, Y.T., Wang, Q.M.: Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2104–2108 (2008)

    Article  Google Scholar 

  30. Muthalif, A.G., Nordin, N.D.: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech. Syst. Signal Process. 54, 417–426 (2015)

    Article  Google Scholar 

  31. Xiao, Z., Yang, T.Q., Dong, Y., Wang, X.C.: Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Appl. Phys. Lett. 104, 223904 (2014)

    Article  Google Scholar 

  32. Hu, Y., Xu, Y.: A wideband vibration energy harvester based on a folded asymmetric gapped cantilever. Appl. Phys. Lett. 104, 053902 (2014)

    Article  Google Scholar 

  33. Zhou, S.X., Cao, J.Y., Inman, D.J., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y.H., Jiang, S.N., Zhu, D.B. et al. Theoretical analysis of a piezoelectric ceramic tube polarized tangentially for hydraulic vibration energy harvesting. Arch Appl Mech 87, 607–615 (2017). https://doi.org/10.1007/s00419-016-1211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1211-z

Keywords

Navigation