Skip to main content
Log in

Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We construct in the present paper the effective growth response of trabecular bone, based on micromechanical analyses at the scale of a representative volume element consisting of individual trabeculae defining the representative unit cell (RUC). From a fundamental perspective, we adopt the physically and micromechanically motivated point of view that growth (resp. resorption) occurs as the surface remodeling of the individual trabeculae, the averaging of which leads to a net growth at the mesoscopic scale of the RUC. The effective model for the growing unit cell relies on an average kinematics which has been formulated in terms of the effective growth velocity gradient and effective elastic rate of deformation tensor, both functions of the rate of the effective density and stress applied over the RUC. The evaluation of the relation between the average rate of growth tensor and elastic growth rate versus the external stress applied to the RUC is obtained from a split of the average rate of growth tensor into its spherical and deviatoric parts, each of which being related to the corresponding applied stress quantities. The effective growth model is written for three different loading conditions as a polynomial relation between the components of the rate of growth tensor and similar components of the stress tensor under planar conditions, with a nonlinear function of the effective density as a weighting factor. The developed methodology is quite general and is applicable to any choice of the RUC morphology representative of the internal bone architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beaupré, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J. Orthop. Res. 8, 662–670 (1990)

    Article  Google Scholar 

  2. Carter, D.R., Van der Meulen, M.C.H., Beaupré, G.S.: Mechanical factors in bone growth and development. Bone 18, S5–S10 (1996)

    Article  Google Scholar 

  3. Chen, G., Pettet, G.J., Pearcy, M., McElwain, D.L.S.: Modelling external bone adaptation using evolutionary structural optimisation. Biomech. Model. Mechanobiol. 6, 275–285 (2007)

    Article  Google Scholar 

  4. Cowin, S.C., Firoozbakhsh, K.: Bone remodeling of diaphysial surfaces under constant load: theoretical predictions. J. Biomech. 14, 471–484 (1981)

    Article  Google Scholar 

  5. Cowin, S.C., Hegedus, D.H.: Bone remodeling I: theory of adaptive elasticity. J. Elast. 6, 313–325 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doblaré, M., Garcia, J.M.: Anisotropic bone remodelling model based on a continuum damage-repair theory. J. Biomech. 35, 1–17 (2002)

    Article  Google Scholar 

  7. Drozdov, A.D.: Volumetric growth of viscoelastic solids. Mech. Solids 25, 99–106 (1990)

    Google Scholar 

  8. Entov, V.M.: Mechanical model of scoliosis. Mech. Solids 18, 199–206 (1983)

    Google Scholar 

  9. Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)

    Article  MATH  Google Scholar 

  10. Fernandes, P., Rodrigues, H., Jacobs, C.: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of wolff. Comput. Methods Biomech. Biomed. Eng. 2, 125–138 (1999)

    Article  Google Scholar 

  11. Fridez, P., Rakotomanana, L., Terrier, A., Leyvraz, P.F.: Three dimensional model of bone external adaptation. Comput. Methods Biomech. Biomed. Eng. 2, 189–196 (1998)

    Google Scholar 

  12. Ganghoffer, J.F., Plotnikov, P.I., Sokołowski, J.: Mathematical modeling of volumetric material growth. Arch. Appl. Mech. 84, 1357–1371 (2014)

    Article  MATH  Google Scholar 

  13. Ganghoffer, J.F., Sokolowski, J.: A micromechanical approach to volumetric and surface growth in the framework of shape optimization. Int. J. Eng. Sci. 74, 207–226 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ganghoffer, J.F.: A contribution to the mechanics and thermodynamics of surface growth, application to bone remodeling. Int. J. Eng. Sci. 50(1), 166–191 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation—part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids 58(9), 1434–1459 (2010)

    Article  MATH  Google Scholar 

  16. Garijo, N., Fernàndez, J.R., Pérez, M.A., García-Aznar, J.M.: Numerical stability and convergence analysis of bone remodeling model. Comput. Methods Appl. Mech. Eng. 271, 253–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)

    Article  Google Scholar 

  18. Goda, I., Ganghoffer, J.F., Maurice, G.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94–95, 138–157 (2016)

    Article  Google Scholar 

  19. Goda, I., Ganghoffer, J.F.: 3D plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. Int. J. Eng. Sci. 87, 58–82 (2015)

    Article  Google Scholar 

  20. Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303–311 (1968)

    Article  Google Scholar 

  21. Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B., Slooff, T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987)

    Article  Google Scholar 

  22. Huiskes, R., Ruimerman, R., van Lenthe, G.H., Janssen, J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706 (2000)

    Article  Google Scholar 

  23. Kaczmarczyk, L., Pearce, C.J.: Efficient numerical analysis of bone remodelling. J. Mech. Behav. Biomed. 4, 858–867 (2011)

    Article  Google Scholar 

  24. Kuhl, E., Menzel, A., Steinmann, P.: Computational modeling of growth. Comput. Mech. 32, 71–88 (2003)

    Article  MATH  Google Scholar 

  25. Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. J. Appl. Math. Mech/Z. Angew. Math. Mech. 92(6), 426–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levenston, M.E., Carter, D.R.: An energy dissipation- based model for damage stimulated bone adaptation. J. Biomech. 31, 579–586 (1998)

    Article  Google Scholar 

  27. Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 1–14 (2016). doi:10.1177/1081286516653272

  28. Martin, R.B.: Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J. Orthop. Res. 13(3), 309–316 (1995)

    Article  Google Scholar 

  29. McNamara, B.P., Prendergast, P.J., Taylor, D.: Prediction of bone adaptation in the ulnar-osteotomized sheep’s forelimb using an anatomical finite element model. J. Biomed. Eng. 14, 209–216 (1992)

    Article  Google Scholar 

  30. Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)

    Article  Google Scholar 

  31. Negus, C., Impelluso, T.: Continuum remodeling revisited. Biomech. Model. Mechanobiol. 6(4), 211–226 (2007)

    Article  Google Scholar 

  32. Prendergast, P.J., Taylor, D.: Prediction of bone adaptation using damage accumulation. J. Biomech. 27, 1067–1076 (1994)

    Article  Google Scholar 

  33. Ramtani, S., Zidi, M.: A theoretical model of the effect of continuum damage on a bone adaptation model. J. Biomech. 34, 471–479 (2001)

    Article  Google Scholar 

  34. Ramtani, S., Zidi, M.: Damaged-bone remodeling theory: thermodynamical approach. Mech. Res. Commun. 26(6), 701–708 (1999)

    Article  MATH  Google Scholar 

  35. Rodriguez, E.K., Hoger, A., McCullogh, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  36. Sanz-Herrera, J.A., Garcia-Aznar, J.M., Doblare, M.: A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech. Model. Mechanobiol. 7(5), 355–366 (2008)

    Article  Google Scholar 

  37. Skalak, R., Farrow, D.A., Hoger, A.: Kinematics of surface growth. J. Math. Biol. 35, 869–907 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Skalak, R.: Growth as a finite displacement field. In: Carlsson, D.E., Shield, R.T. (eds.) Proceedings of the IUTAM Symposium on Finite Elasticity, Martinus Nijhoff, The Hague, pp. 347–355 (1981)

  39. Stein, A.A.: The deformation of a rod of growing biological material under longitudinal compression. J. Appl. Math. Mech. 59, 139–146 (1995)

    Article  MathSciNet  Google Scholar 

  40. van der Meulen, M.C.H., Beaupré, G.S., Carter, D.R.: Mechanobiologic influences in long bone crosssectional growth. Bone 14, 635–642 (1993)

    Article  Google Scholar 

  41. van Eijden, T.M.G.J., van Ruijven, L.J., Giesen, E.B.W.: Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif. Tissue Int. 75, 502–508 (2004)

    Article  Google Scholar 

  42. Weinans, H., Huiskes, R., Grootenboer, H.J.: The behavior of adaptive bone-remodeling simulation-models. J. Biomech. 25, 1425–1441 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ganghoffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louna, Z., Goda, I., Ganghoffer, JF. et al. Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level. Arch Appl Mech 87, 457–477 (2017). https://doi.org/10.1007/s00419-016-1204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1204-y

Keywords

Navigation