Archive of Applied Mechanics

, Volume 87, Issue 5, pp 785–799 | Cite as

Dynamics of mechanical systems with two sliding contacts: new facets of Painlevé’s paradox

  • Péter L. VárkonyiEmail author


We investigate the dynamics of finite degree-of-freedom, planar mechanical systems with multiple sliding, unilateral frictional point contacts. A complete classification of systems with 2 sliding contacts is given. The contact-mode-based approach of rigid body mechanics is combined with linear stability analysis using a compliant contact model to determine the feasibility and the stability of every possible contact mode in each class. Special forms of non-stationary contact dynamics including “impact without collision” and “reverse chattering” are also investigated. Many types of solution inconsistency and indeterminacy are identified and new phenomena related to Painlevé’s non-existence and non-uniqueness paradoxes are discovered. Among other results, we show that the non-existence paradox is not fully resolvable by considering impulsive contact forces. These findings contribute to a growing body of evidence that rigid body mechanics cannot be developed into a complete and self-consistent theory in the presence of contacts and friction.


Contact mechanics Dry friction Painlevé paradox Contact regularization Impact without collision 



The author thanks Alan Champneys whose insights helped to significantly improve this paper. This work has been supported by the National, Research, Development and Innovation Office of Hungary under Grant 104501.


  1. 1.
    Anh, L.X.: Dynamics of Mechanical Systems with Coulomb Friction (Foundations of Engineering Mechanics). Springer, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Champneys, A.R., Várkonyi, P.L.: The Painlevé paradox in contact mechanics. J. Appl. Math. (2016). arXiv:1601.03545
  3. 3.
    Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65, 939–951 (1998)CrossRefGoogle Scholar
  4. 4.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem: Computer Science and Scientific Computing. Academic Press, Boston (1992)Google Scholar
  5. 5.
    Dupont, P.E., Yamajako, S.P.: Stability of frictional contact in constrained rigid body dynamics. IEEE Trans. Robot. Autom. 13, 230–236 (1997)CrossRefGoogle Scholar
  6. 6.
    Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A: Solids 18, 653–677 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Grigoryan, S.S.: The solution to the Painleve paradox for dry friction. Dokl. Phys. 46, 499–503 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hervé, B., Sinou, J.J., Mahé, H., Jezequel, L.: Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects. Eur. J. Mech.-A/Solids 27, 141–160 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29, 197–205 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hultén, J.: Brake squeal: a self-exciting mechanism with constant friction. In: Proceedings of the SAE Truck and Bus Metting, 932965, Detroit (1993)Google Scholar
  11. 11.
    Ivanov, A.P.: Singularities in the dynamics of systems with non-ideal constraints. J. Appl. Math. Mech. 67, 185–192 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jellett, J.H.: A Treatise on the Theory of Friction. Hodges, Foster, and Co, Dublin (1872)zbMATHGoogle Scholar
  13. 13.
    Lecornu, L.: Sur la loi de Coulomb. C. R. Acad. Sci. Paris 140, 847–848 (1905)zbMATHGoogle Scholar
  14. 14.
    Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech.-A/Solids 21, 869–896 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, C., Zhao, Z., Chen, B.: The bouncing motion appearing in a robotic system with unilateral constraint. Nonlinear Dyn. 49, 217–232 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Neimark, Y.I., Fufayev, N.A.: The Painlevé paradoxes and the dynamics of a brake shoe. J. Appl. Math. Mech. 59, 343–352 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nordmark, A., Dankowicz, H., Champneys, A.R.: Friction-induced reverse chatter in rigid-body mechanisms with impacts. IMA J. Appl. Math 76, 85–119 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Or, Y., Rimon, E.: On the hybrid dynamics of planar mechanisms supported by frictional contacts II: Stability of two-contact rigid body postures. In: Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, pp. 1219–1224 (2008)Google Scholar
  19. 19.
    Or, Y., Rimon, E.: Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion. Nonlinear Dyn. 67, 1647–1668 (2012)CrossRefzbMATHGoogle Scholar
  20. 20.
    Painlevé, P.: Sur les lois du frottement de glissement. C. R. Acad. Sci. Paris 141(401–405), 546–552 (1905)zbMATHGoogle Scholar
  21. 21.
    Papinniemi, A., Lai, J.C., Zhao, J., Loader, L.: Brake squeal: a literature review. Appl. Acoust. 63, 391–400 (2002)CrossRefGoogle Scholar
  22. 22.
    Payr, M., Glocker, C.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41, 361–383 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley Series in Nonlinear Science. Wiley, New York (1996)CrossRefzbMATHGoogle Scholar
  24. 24.
    Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3–39 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stronge, W.J.: Impact Mechanics. Cambridge University Press (2004)Google Scholar
  26. 26.
    Van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43, 483–490 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Várkonyi, P.L., Gontier, D., Burdick, J.W.: On the Lyapunov stability of quasistatic planar biped robots. In: Proceedings of the IEEE International Conference on Robotics and Automation pp. 63–70 (2012)Google Scholar
  28. 28.
    Várkonyi, P.L.: Dynamics of rigid bodies with multiple frictional contacts: new faces of Painleves’s paradox. In: Awrejewicz, J., Kazmierczak, M., Mrozowski, J., Olejnik, P. (eds.) Proceedings of the DSTA 2015 Dynamical Systems: Mechatronics and Life Sciences, pp. 519–530. TU of Lodz, Lodz (2015)Google Scholar
  29. 29.
    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies. Cambridge University Press (1917)Google Scholar
  30. 30.
    Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Intl. J. Robust Nonlinear Control 11, 435–451 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhao, Z., Liu, C., Chen, B., Brogliato, B.: Asymptotic analysis of Painlevé’s paradox. Multibody Syst. Dyn. 35, 1–21 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhao, Z., Liu, C., Chen, B.: The Painlevé paradox studied at a 3D slender rod. Multibody Syst. Dyn. 19, 323–343 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Budapest University of TechnologyBudapestHungary

Personalised recommendations