Skip to main content
Log in

A holistic approach for the vibration and acoustic analysis of combustion engines including hydrodynamic interactions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the paper at hand, a holistic virtual engineering approach for the acoustic analysis of combustion engines is presented, which uses an elastic multi-body simulation to calculate the excitation forces of the engine during the combustion process. These forces are caused by the piston motion and affect the main bearings and the cylinder walls. Due to the fact that both the crankshaft and the piston are supported against the housing by fluid films, it is important to consider the hydrodynamics in the simulation of the crank drive dynamics. Based on the excitation forces, the vibration analysis of the engine is carried out, which provides the input data for the acoustic simulations. The entire simulation workflow is demonstrated on a four-stroke combustion engine. Finally, the presented approach is validated by sound pressure measurements of a running engine in an anechoic room.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. \( u_1, u_2\)—local velocity of the piston (1) and the cylinder (2) in lateral direction. \( v_1, v_2\)—local velocity of the piston (1) and the cylinder (2) in stroke direction.

  2. Denoted as markers.

  3. ts—Thrust side.

  4. ats—Anti-thrust side.

References

  1. Crabb, H.C.: The Virtual Engineer: 21st Century Product Development. Society of Manufacturing, Dearborn (1998)

    Google Scholar 

  2. Jekosch, U.: Basic concepts and terms of "quality", reconsidered in the context of product sound-quality. Acta Acust. United Acust. 90, 999–1006 (2004)

    Google Scholar 

  3. Gérard, F., Tournour, M., Masri, N.E., Cremers, L., Felice, M., Selmane, A.: Acoustic transfer vectors for numerical modeling of engine noise. Sound Vib. Mag. 1–5 (2002)

  4. Siano, D.: CAE process to simulate and optimise engine noise and vibration. J. Environ. Sci. Eng. B 1, 1146–1161 (2012)

    Google Scholar 

  5. Gustafsson, M., Jacqmot, J., Caro, S.: Experimental validation of an efficient procedure for large acoustic radiation problems. In: Proceedings of the ISMA 2010 (2010)

  6. Lang, J.R.: Kolben-Zylinder-Dynamik : finite Elemente Bewegungssimulation unter Berücksichtigung strukturdynamischer und elastohydrodynamischer Wechselwirkungen (Piston–Cylinder–Dynamics: Finite Element Simulation Under Consideration of Structural and Elasto-Hydrodynamical Interactions). Ph.D. thesis, RWTH Aachen (1997)

  7. Knoll, G., Peeken, H., Lechtape-Grüter, R., Lang, J.R.: Computer-aided simulation of piston and piston ring dynamics. J. Eng. Gas Turbines Power 118, 880–886 (1996)

    Article  Google Scholar 

  8. Offner, G., Priebsch, H.: Elastic body contact simulation for predicting piston slap induced noise in an IC engine. In: Rahnejat, H., Ebrahimi, M., Whalley, R. (eds.) Multi-Body Dynamics: Monitoring and Simulation Techniques—II, pp. 191–206. Professional Engineering, London (2000)

    Google Scholar 

  9. Offner, G., Krasser, J., Laback, O., Priebsch, H.: Simulation of multi-body dynamics and elastohydrodynamic excitation in engines especially considering piston-liner contact. Proc. Inst. Mech. Eng. Part K. J. Multibody Dyn. 215, 93–102 (2001)

    Google Scholar 

  10. Junhong, Z., Jun, H.: CAE process to simulate and optimise engine noise and vibration. Mech. Syst. Signal Process. 20, 1400–1409 (2006)

    Article  Google Scholar 

  11. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: The Basis, vol. 1. Butterworth Heinemann, London (2000)

    MATH  Google Scholar 

  12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 90, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duvigneau, F., Liefold, S., Höchstetter, M., Verhey, J.L., Gabbert, U.: Analysis of simulated engine sounds using a psychoacoustic model. J. Sound Vib. 366, 544–555 (2016)

    Article  Google Scholar 

  14. Heckmann, A.: The Modal Multifield Approach in Multibody Dynamics. Ph.D. Thesis, University of Hannover (2005)

  15. Woschke, E.: Simulation gleitgelagerter Systeme in Mehrkörperprogrammen unter Berücksichtigung mechanischer und thermischer Deformationen (Simulation of Systems Supported in Journal Bearings in MBS Programs Under Consideration of Mechanical and Thermal Deformations). Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2013)

  16. Gèradin, M., Cardona, A.: Flexible Multibody Dynamics. Wiley, Weinheim (2001)

    MATH  Google Scholar 

  17. Daniel, C., Woschke, E., Strackeljan, J.: Modellierung von Gleitlagern in rotordynamischen Modellen (Modeling of journal bearings in rotordynamic systems). In: 8th Proceedings of the International Conference on Vibrations in Rotating Machines, Vienna, Paper-ID 33 (2009)

  18. Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Upper Saddle River (1987)

    MATH  Google Scholar 

  20. Wallrapp, O.: Standardization of flexible body modeling in multibody system codes part I: definition of standard input data. Mech. Struct. Mach. 22, 283–304 (1994)

    Article  Google Scholar 

  21. Nitzschke, S., Daniel, C., Woschke, E., Strackeljan, J.: Simulation der Kolbendynamik unter Berücksichtigung der EHD-Kopplung (Simulation of piston dynamics under consideration of EHL-coupling). In: Proceedings of the 9th Magdeburger Maschinenbau-Tage, Magdeburg, pp. 84–92 (2009)

  22. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A295, 300–319 (1966)

    Article  Google Scholar 

  23. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Springer, New York (1998)

    Book  MATH  Google Scholar 

  24. Banerjee, P.K.: The Boundary Element Methods in Engineering. McGraw-Hill College, London (1994)

    Google Scholar 

  25. Givoli, D.: Computational absorbing boundaries. In: Marburg, S., Nolte, B. (eds.) Computational Acoustics of Noise Propagation in Fluids, pp. 145–166. Springer, Berlin (2008)

    Google Scholar 

  26. Burnett, D.S.: A 3-D acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Am. 96, 2798–2816 (1994)

    Article  MathSciNet  Google Scholar 

  27. Bramble, J.H., Pasciak, J.E.: Analysis of a Cartesian PML approximation to acoustic scattering problems in \({\mathbb{R}}^2\) and \({\mathbb{R}}^3\). J. Comput. Appl. Math. 247, 209–230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Blech, C.: Modellierung und Auslegung von thermo-akustischen Kapseln für motorische Anwendungen (Modeling and Designing of Thermo-Acoustic Encapsulations for Engine Applications). Student Research Project, Otto-von-Guericke University Magdeburg, Magdeburg (2014)

Download references

Acknowledgments

The presented work is part of the joint project COMO “Competence in Mobility,” which is financially supported by the European Union as well as the German State of Saxony-Anhalt. This support is gratefully acknowledged. We also would like to thank Dr. Ryan R. Orszulik for his great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Duvigneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvigneau, F., Nitzschke, S., Woschke, E. et al. A holistic approach for the vibration and acoustic analysis of combustion engines including hydrodynamic interactions. Arch Appl Mech 86, 1887–1900 (2016). https://doi.org/10.1007/s00419-016-1153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1153-5

Keywords

Navigation