Advertisement

Archive of Applied Mechanics

, Volume 86, Issue 1–2, pp 351–360 | Cite as

Elastomer composites based on filler with negative thermal expansion coefficient in sealing application

  • Sergey N. ShubinEmail author
  • Alexander B. Freidin
  • Anton G. Akulichev
Special

Abstract

We consider elastomer composites with fillers made of a material that exhibits negative coefficient of thermal expansion (CTE). Such fillers provide an opportunity to reduce the thermal shrinkage of the composite in cooling. It is especially relevant in sealing applications for structures operated at low temperatures. It is known that CTE of rubber is at least an order of magnitude higher than that of steel. Due to this fact, an elastomer seal compressed in its groove may lose interference with the mating steel surface upon temperature drop and, thus, form a leak path for the contained fluids like hydrocarbons. In the present paper we start with estimates of the contact pressure drop in a typical O-ring rubber seal caused by cooling. Then we investigate how the volume fraction and the shape of filler particles affect thermo-elastic properties and the sealing performance of the composite. We demonstrate that the contact pressure drop due to freezing down to \({-}60\,^{\circ }\hbox {C}\) can be reduced twice in the case of spherical inclusions, and the effect can be significantly enhanced by changing the shape of the filler particles. Finally, having in mind the strain fracture criterion, we estimate local strains at the interface between elastomer and filler considering various shapes of the filler particles.

Keywords

Elastomer Negative thermal expansion Composites  Seal 

Notes

Acknowledgments

This work was supported by Russian Foundation for Basic Research and FMC Technologies, Inc.

References

  1. 1.
    Gautier, D.L., et al.: Assessment of undiscovered oil and gas in the Arctic. Science 324, 1175–1179 (2008)CrossRefGoogle Scholar
  2. 2.
    Bhowmick, A.K. (ed.): Current Topics in Elastomers Research. CRC Press, Boca Raton (2008)Google Scholar
  3. 3.
    Miller, W., Smith, C.W., Mackenzie, D.S., Evans, K.E.: Negative thermal expansion: a review. J. Mater. Sci. 44, 5441–5451 (2009)CrossRefGoogle Scholar
  4. 4.
    Takenaka, K.: Negative thermal expansion materials: technological key for control of thermal expansion. Sci. Technol. Adv. Mater. 13, 1–11 (2012)CrossRefGoogle Scholar
  5. 5.
    Lind, C.: Two decades of negative thermal expansion research: Where do we stand? Materials 5, 1125–1154 (2012)CrossRefGoogle Scholar
  6. 6.
    Drymiotis, F.R., Ledbetter, H., Betts, J.B., Kimura, T., Lashley, J.C., Migliori, A., Ramirez, A.P., Kowach, G.R., Van Duijn, J.: Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate (ZrW2O8). Phys. Rev. Lett. 93(2), 025502 (2004)CrossRefGoogle Scholar
  7. 7.
    Mary, T.A., Evans, J.S.O., Vogt, T., Sleight, A.W.: Negative thermal expansion from 0.3 to 1050 Kelvin in \(\text{ ZrW }_2\text{ O }_8\). Science 272, 90–92 (1996)CrossRefGoogle Scholar
  8. 8.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sternberg, E., Turteltaub, M.J.: Compression of an elastic roller between two rigid plates. In: Sedov, L.I., et al. (eds.) Continuum Mechanics and Related Problems of Analysis. Muskhelishvili Anniversary Volume, pp. 495–515. Nauka Publishing House, Moscow (1972)Google Scholar
  10. 10.
    Levin, V.: On the thermal expansion coefficients of heterogeneous materials. Proc. Acad. Sci. USSR Mech. Solids 1, 88–93 (1967)Google Scholar
  11. 11.
    Sevostianov, I.: On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech. Mater. 45, 20–33 (2011)CrossRefGoogle Scholar
  12. 12.
    Kanaun, S.K., Levin, V.M.: Self-Consistent Methods for Composites. V. 1: Static Problems. Springer, Dordrecht (2007)Google Scholar
  13. 13.
    Kachanov, M., Sevostianov, I.L. (eds.): Effective Properties of Heterogeneous Materials. Springer, Berlin (2013)Google Scholar
  14. 14.
    Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall. 21, 571–574 (1973)CrossRefGoogle Scholar
  15. 15.
    Hashin, Z., Shtricman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Yamashina, N., Isobe, T., Ando, S.: Low thermal expansion composites prepared from polyimide and \(\text{ ZrW }_2\text{ O }_8\) particles with negative thermal expansion. J. Photopolym. Sci. Technol. 25, 385–388 (2012)CrossRefGoogle Scholar
  17. 17.
    Kozy, L.C., Tahir, M.N., Lind, C., Tremel, W.: Particle size and morphology control of the negative thermal expansion material cubic zirconium tungstate. J. Mater. Chem. 19, 2760–2765 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sergey N. Shubin
    • 1
    • 2
    Email author
  • Alexander B. Freidin
    • 1
    • 3
    • 4
  • Anton G. Akulichev
    • 2
  1. 1.Institute for Problems in Mechanical Engineering of Russian Academy of ScienceSaint-PetersburgRussia
  2. 2.FMC TechnologiesSaint-PetersburgRussia
  3. 3.Saint-Petersburg Polytechnic UniversitySaint-PetersburgRussia
  4. 4.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations