Skip to main content
Log in

A bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Bridging laws are essential in predicting the mechanical behaviour of conventional short-fibre-reinforced composites and the emerging nanofibre-reinforced composites. In this paper, we first review some studies on the toughness of carbon nanotube-reinforced composites that is induced by the pull-out of the nanotubes from the matrix, and on the development of the corresponding bridging laws. A close examination of the available bridging laws for carbon nanotubes reveals that some fundamental issues need to be further addressed. We propose a simple nonlinear and smooth bridging law to describe the pull-out force–displacement behaviour of carbon nanotubes from a matrix. This law contains only two material parameters, reflects the basic features of the pull-out experiments, and is easy to use. We then use this bridging law to calculate the fracture toughness of carbon nanotube-reinforced nanocomposites and predict the pull-out force–displacement response of conventional short fibres that are grafted with carbon nanotubes. Some parametric studies are conducted to reveal the influence of various parameters at the nano- and micro-scale on these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte, K.: Carbon nanotube-reinforced epoxy-compo sites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64(15), 2363–2371 (2004)

    Article  Google Scholar 

  2. Schulte, K., Gojny, F.H., Wichmann, M.H.G., Fiedler, B.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)

    Google Scholar 

  3. Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., Chang, B., Xu, J.M.: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931–944 (2004)

    Article  Google Scholar 

  4. Schulte, K., Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–25 (2006)

    Article  Google Scholar 

  5. Cho, J., Inam, F., Reece, M.J., Chlup, Z., Dlouhy, I., Shaffer, M.S.P., Boccaccini, A.R.: Carbon nanotubes: Do they toughen brittle matrices? J. Mater. Sci. 46(14), 4770–4779 (2011)

    Article  Google Scholar 

  6. Wichmann, M.H.G., Schulte, K., Wagner, H.D.: On nanocomposite toughness. Compos. Sci. Technol. 68(1), 329–331 (2008)

    Article  Google Scholar 

  7. Mukhopadhyay, A., Chu, B.T.T., Green, M.L.H., Todd, R.I.: Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater. 58(7), 2685–2697 (2010)

    Article  Google Scholar 

  8. Tong, L.Y., Sun, X.N., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42(1), 5–23 (2008)

    Google Scholar 

  9. Chen, Y.L., Liu, B., He, X.Q., Huang, Y., Hwang, K.C.: Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70(9), 1360–1367 (2010)

    Article  Google Scholar 

  10. Lawrence, P.: Some theoretical considerations of fiber pull-out from an elastic matrix. J. Mater. Sci. 7(1), 1–6 (1972)

    Article  Google Scholar 

  11. Seshadri, M., Saigal, S.: Crack bridging in polymer nanocomposites. J. Eng. Mech. ASCE 133(8), 911–918 (2007)

    Article  Google Scholar 

  12. Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38(3), 289–324 (1990)

    Article  Google Scholar 

  13. Xu, X.P., Needleman, A.: Numerical simulations of fast crack-growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)

    Article  MATH  Google Scholar 

  14. Mirjalili, V., Hubert, P.: Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos. Sci. Technol. 70(10), 1537–1543 (2010)

    Article  Google Scholar 

  15. Chen, X., Beyerlein, I.J., Brinson, L.C.: Bridged crack models for the toughness of composites reinforced with curved nanotubes. J. Mech. Phys. Solids 59(9), 1938–52 (2011)

    Article  MATH  Google Scholar 

  16. Chen, X., Beyerlein, I.J., Brinson, L.C.: Curved-fiber pull-out model for nanocomposites. Part 1: bonded stage formulation. Mech. Mater. 41(3), 279–292 (2009)

    Article  Google Scholar 

  17. Chen, X., Beyerlein, I.J., Brinson, L.C.: Curved-fiber pull-out model for nanocomposites. Part 2: interfacial debonding and sliding. Mech. Mater. 41(3), 293–307 (2009)

    Article  Google Scholar 

  18. Pavia, F., Curtin, W.A.: Optimizing strength and toughness of nanofiber-reinforced CMCs. J. Mech. Phys. Solids 60(9), 1688–1702 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, V.C., Wang, Y., Backer, S.: Effect of inclining angle, bundling and surface-treatment on synthetic-fiber pull-out from a cement matrix. Composites 21(2), 132–140 (1990)

    Article  Google Scholar 

  20. Kelly, A.: Interface effects and work of fracture of a fibrous composite. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 319(1536), 95–116 (1970)

    Article  Google Scholar 

  21. Marshall, D.B., Cox, B.N., Evans, A.G.: The mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall. 33(11), 2013–2021 (1985)

    Article  Google Scholar 

  22. Thouless, M.D., Evans, A.G.: Effects of pull-out on the mechanical-properties of ceramic-matrix composites. Acta Metall. 36(3), 517–522 (1988)

    Article  Google Scholar 

  23. Li, V.C., Wang, Y.J., Backer, S.: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J. Mech. Phys. Solids 39(5), 607–625 (1991)

    Article  Google Scholar 

  24. Kim, J.K., Mai, Y.W.: High-strength, high fracture-toughness fiber composites with interface control—a review. Compos. Sci. Technol. 41(4), 333–378 (1991)

    Article  Google Scholar 

  25. Jain, L.K., Mai, Y.W.: In the effect of stitching on mode-I delamination toughness of laminated composites. Compos. Sci. Technol. 51(3), 331–345 (1994)

    Article  Google Scholar 

  26. Karihaloo, B.L., Wang, J., Grzybowski, M.: Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites. J. Mech. Phys. Solids 44(10), 1565–1586 (1996)

    Article  Google Scholar 

  27. Fu, S.Y., Lauke, B.: The fibre pull-out energy of misaligned short fibre composites. J. Mater. Sci. 32(8), 1985–1993 (1997)

    Article  Google Scholar 

  28. Cartie, D.D.R., Cox, B.N., Fleck, N.A.: Mechanisms of crack bridging by composite and metallic rods. Compos. Part A Appl. Sci. Manuf. 35(11), 1325–1336 (2004)

    Article  Google Scholar 

  29. Mouritz, A.P., Koh, T.M.: Re-evaluation of mode I bridging traction modelling for z-pinned laminates based on experimental analysis. Compos. Part B Eng. 56, 797–807 (2014)

    Article  Google Scholar 

  30. Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)

    Article  Google Scholar 

  31. Barber, A.H., Cohen, S.R., Kenig, S., Wagner, H.D.: Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 64(15), 2283–2289 (2004)

    Article  Google Scholar 

  32. Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)

    Article  Google Scholar 

  33. Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low Temp. Phys. 119(1–2), 41–48 (2000)

    Article  Google Scholar 

  34. Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)

    Article  Google Scholar 

  35. Cooper, C.A., Cohen, S.R., Barber, A.H., Wagner, H.D.: Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81(20), 3873–3875 (2002)

    Article  Google Scholar 

  36. Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S., Liao, K.: Physical interactions at carbon nanotube-polymer interface. Polymer 44(25), 7757–7764 (2003)

    Article  Google Scholar 

  37. Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube-polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)

    Article  Google Scholar 

  38. Ding, W., Eitan, A., Fisher, F.T., Chen, X., Dikin, D.A., Andrews, R., Brinson, L.C., Schadler, L.S., Ruoff, R.S.: Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 3(11), 1593–1597 (2003)

    Article  Google Scholar 

  39. Bower, C., Rosen, R., Jin, L., Han, J., Zhou, O.: Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74(22), 3317–3319 (1999)

    Article  Google Scholar 

  40. Qian, D., Dickey, E.C.: In-situ transmission electron microscopy studies of polymer–carbon nanotube composite deformation. J. Microsc. Oxf. 204, 39–45 (2001)

    Article  MathSciNet  Google Scholar 

  41. Watts, P.C.P., Hsu, W.K.: Behaviours of embedded carbon nanotubes during film cracking. Nanotechnology 14(5), L7–L10 (2003)

    Article  Google Scholar 

  42. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  Google Scholar 

  43. Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1–3), L103–L108 (2003)

    Article  Google Scholar 

  44. Yang, L., Tong, L., He, X.: MD simulation of carbon nanotube pullout behavior and its use in determining mode i delamination toughness. Comput. Mater. Sci. 55, 356–364 (2012)

    Article  Google Scholar 

  45. Yang, L., Tong, L., He, X., Wagner, H.D., Wang, R.: Molecular dynamic simulation of oblique pullout of carbon nanotube from resin. Comput. Mater. Sci. 83, 504–12 (2014)

  46. Leung, C.K.Y., Ybanez, N.: Pullout of inclined flexible fiber in cementitious composite. J. Eng. Mech. ASCE 123(3), 239–246 (1997)

    Article  Google Scholar 

  47. DiFrancia, C., Ward, T.C., Claus, R.O.: The single-fibre pull-out test. 1. Review and interpretation. Compos. Part A Appl. Sci. Manuf. 27(8), 597–612 (1996)

    Article  Google Scholar 

  48. Dai, S.C., Yan, W.Y., Liu, H.Y., Mai, Y.W.: Experimental study on z-pin bridging law by pullout test. Compos. Sci. Technol. 64(16), 2451–2457 (2004)

    Article  Google Scholar 

  49. Plain, K.P., Tong, L.: Experimental validation of theoretical traction law for inclined through-thickness reinforcement. Compos. Struct. 91(2), 148–157 (2009)

    Article  Google Scholar 

  50. Gopalaratnam, V.S., Shah, S.P.: Tensile failure of steel fiber-reinforced mortar. J. Eng. Mech. ASCE 113(5), 635–652 (1987)

    Article  Google Scholar 

  51. Karihaloo, B.L., Murthy, A.R., Iyer, N.R.: Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model. Cem. Concr. Res. 49, 82–88 (2013)

    Article  Google Scholar 

  52. Bao, G., Suo, Z.: Remarks on crack bridging concepts. Appl. Mech. Rev. 45, 355–366 (1992)

    Article  Google Scholar 

  53. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)

    Article  Google Scholar 

  54. Chowdhury, S.C., Okabe, T.: Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos. Part A Appl. Sci. Manuf. 38(3), 747–754 (2007)

    Article  Google Scholar 

  55. Wernik, J.M., Cornwell-Mott, B.J., Meguid, S.A.: Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model. Int. J. Solids Struct. 49(13), 1852–1863 (2012)

    Article  Google Scholar 

  56. Li, Y., Liu, S., Hu, N., Han, X., Zhou, L., Ning, H., Wu, L., Alamusi, Yamamoto, G., Chang, C., Hashida, T., Atobe, S., Fukunaga, H.: Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites. J. Appl. Phys. 113(14), 144304 (2013)

  57. Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)

    Article  Google Scholar 

  58. Lau, K.T.: Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 370(3–4), 399–405 (2003)

    Article  Google Scholar 

  59. Xiao, K.Q., Zhang, L.C.: The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J. Mater. Sci. 39(14), 4481–4486 (2004)

    Article  Google Scholar 

  60. Xiao, T., Liao, K.: A nonlinear pullout model for unidirectional carbon nanotube-reinforced composites. Compos. Part B Eng. 35(3), 211–217 (2004)

    Article  Google Scholar 

  61. Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)

    Article  Google Scholar 

  62. Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42(5–6), 1649–1667 (2005)

    Article  MATH  Google Scholar 

  63. Nuriel, S., Katz, A., Wagner, H.D.: Measuring fiber-matrix interfacial adhesion by means of a ‘drag-out’ micromechanical test. Compos. Part A Appl. Sci. Manuf. 36(1), 33–37 (2005)

    Article  Google Scholar 

  64. He, X., Wang, C., Tong, L., Li, Y., Peng, Q., Mei, L., Wang, R.: A pullout model for inclined carbon nanotube. Mech. Mater. 52, 28–39 (2012)

    Article  Google Scholar 

  65. Wang, J., Karihaloo, B.L.: Material instability in the tensile response of short-fibre-reinforced quasi-brittle composites. Arch. Mech. 52(4–5), 839–855 (2000)

    MATH  Google Scholar 

  66. Wang, J.: Overall moduli and constitutive relations of bodies containing multiple bridged microcracks. Int. J. Solids Struct. 39(8), 2203–2214 (2002)

    Article  MATH  Google Scholar 

  67. Tatarko, P., Grasso, S., Porwal, H., Chlup, Z., Saggar, R., Dlouhy, I., Reece, M.J.: Boron nitride nanotubes as a reinforcement for brittle matrices. J. Eur. Ceram. Soc. 34(14), 3339–3349 (2014)

    Article  Google Scholar 

  68. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(MAR), 72–79 (1952)

    Article  Google Scholar 

  69. Dondero, W.E., Gorga, R.E.: Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J. Polym. Sci. Part B Polym. Phys. 44(5), 864–878 (2006)

    Article  Google Scholar 

  70. Thostenson, E.T., Li, C.Y., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65(3–4), 491–516 (2005)

    Article  Google Scholar 

  71. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)

    Article  Google Scholar 

  72. Wang, C., Li, Y., Tong, L., Song, Q., Li, K., Li, J., Peng, Q., He, X., Wang, R., Jiao, W., Du, S.: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites. Carbon 69, 239–246 (2014)

    Article  Google Scholar 

  73. Jia, Y., Chen, Z., Yan, W.: A numerical study on carbon nanotube-hybridized carbon fibre pullout. Compos. Sci. Technol. 91, 38–44 (2014)

    Article  Google Scholar 

  74. Hutchinson, J.W., Jensen, H.M.: Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9(2), 139–163 (1990)

    Article  Google Scholar 

  75. Cox, B.N., Sridhar, N.: A traction law for inclined fiber tows bridging mixed-mode cracks. Mech. Adv. Mater. Struct. 9(4), 299–331 (2002)

    Article  Google Scholar 

  76. Cox, B.N.: Snubbing effects in the pullout of a fibrous rod from a laminate. Mech. Adv. Mater. Struct. 12(2), 85–98 (2005)

    Article  Google Scholar 

  77. Plain, K.P., Tong, L.: Traction law for inclined through-thickness reinforcement using a geometrical approach. Compos. Struct. 88(4), 558–569 (2009)

    Article  Google Scholar 

  78. Fu, S.Y., Yue, C.Y., Hu, X., Mai, Y.W.: Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests. Compos. Sci. Technol. 60(4), 569–579 (2000)

    Article  Google Scholar 

  79. Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (1985)

    Book  MATH  Google Scholar 

  80. Andrews, R., Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8(1), 31–37 (2004)

    Article  Google Scholar 

  81. Shao, L.H., Luo, R.Y., Bai, S.L., Wang, J.: Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding. Compos. Struct. 87(3), 274–281 (2009)

    Article  Google Scholar 

  82. Lu, Z., Chen, M., Yang, Z.: An improved pull-out model for the carbon nanotube/nanofiber-reinforced polymer composites with interfacial defects. Polym. Compos. (2015). doi:10.1002/pc.23174

  83. Wang, J., Karihaloo, B.L.: Optimum in situ strength design of composite laminates.1. In situ strength parameters. J. Compos. Mater. 30(12), 1314–1337 (1996)

    Article  Google Scholar 

  84. Wang, J., Tong, L.: A study of the vibration of delaminated beams using a nonlinear anti-interpenetration constraint model. Compos. Struct. 57(1–4), 483–488 (2002)

    Article  Google Scholar 

  85. Qian, H., Bismarck, A., Greenhalgh, E.S., Kalinka, G., Shaffer, M.S.P.: Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem. Mater. 20(5), 1862–1869 (2008)

    Article  Google Scholar 

  86. Hung, K.H., Kuo, W.S., Ko, T.H., Tzeng, S.S., Yan, C.F.: Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers. Compos. Part A Appl. Sci. Manuf. 40(8), 1299–1304 (2009)

    Article  Google Scholar 

  87. Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A.W., Lomov, S.V., Verpoest, I.: Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70(9), 1346–1352 (2010)

    Article  Google Scholar 

  88. An, F., Lu, C., Li, Y., Guo, J., Lu, X., Lu, H., He, S., Yang, Y.: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 33, 197–202 (2012)

    Article  Google Scholar 

  89. Li, Y., Li, Y., Ding, Y., Peng, Q., Wang, C., Wang, R., Sritharan, T., He, X., Du, S.: Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiamine. Compos. Sci. Technol. 85, 36–42 (2013)

    Article  Google Scholar 

  90. Chaboche, J.L., Girard, R., Levasseur, P.: On the interface debonding models. Int. J. Damage Mech. 6(3), 220–257 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

J. Wang and L. Tong thank the support of the China Scholarship Council and the Australian Research Council via Discovery Project Grant (DP130103958). J. Wang also thanks the support of the National Natural Science Foundation of China (Grant Nos. 11232001 and 11521202). Miss Linjuan Wang is thanked for assistance with numerical calculations and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyong Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Tong, L. & Karihaloo, B.L. A bridging law and its application to the analysis of toughness of carbon nanotube-reinforced composites and pull-out of fibres grafted with nanotubes. Arch Appl Mech 86, 361–373 (2016). https://doi.org/10.1007/s00419-015-1100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1100-x

Keywords

Navigation