Skip to main content
Log in

Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Size effects in the mechanical behavior of multilayer pile-ups embedded in channel microstructures are investigated in terms of work-hardening, plastic slip and geometrically necessary dislocations (GND) distributions. The mechanical responses with various channel sizes are computed by three-dimensional discrete dislocation dynamics (DDD), micromorphic crystal plasticity (Microcurl) and field dislocation mechanics (FDM). The analysis is first limited to single slip with a slip plane perpendicular to the channel walls. In DDD simulations, it is found that the overall work-hardening is strongly dependent on distance between neighbor slip layers. The size dependence disappears when the neighbor layers are close enough to interact with each other. It is confirmed by direct comparison between DDD simulations and two analytical expressions derived from simplified model of multilayer pile-ups. Distributions of slip and GNDs are presented and analyzed for various channel sizes. The cases of inclined slip plane and of double slip systems in a channel are also considered and investigated. The two alternative crystal plasticity theories, Microcurl and FDM, are then found to reproduce the results of DDD. In particular, quantitative correspondence is found between the Microcurl and DDD results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Acharya, A., Bassani, J.: Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48, 1565–1595 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aifantis, E.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  3. Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary and statistically stored dislocation density. Acta Mater. 47, 1597–1611 (1999)

    Article  Google Scholar 

  4. Aslan, O., Cordero, N.M., Gaubert, A., Forest, S.: Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bardella, L., Segurado, J., Panteghini, A., Llorca, J.: Latent hardening size effects in small-scale plasticity. Modell. Simul. Mater. Sci. Eng. 21(055), 009 (2013)

    Google Scholar 

  7. Baskaran, R., Akarapu, S., Mesarovic, S., Zbib, H.: Energies and distributions of dislocations in stacked pile-ups. Int. J. Solids Struct. 47, 1144–1153 (2010a)

    Article  MATH  Google Scholar 

  8. Baskaran, R., Akarapu, S., Mesarovic, S.D., Zbib, H.M.: Energies and distributions of dislocations in stacked pile-ups. Int. J. Solids Struct. 47, 1144–1153 (2010b)

    Article  MATH  Google Scholar 

  9. Bassani, J., Needleman, A., Van der Giessen, E.: Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions. Int. J. Solids Struct. 38, 833–853 (2001)

    Article  MATH  Google Scholar 

  10. Berbenni, S., Berveiller, M., Richeton, T.: Intra-granular plastic slip heterogeneities: discrete vs. mean field approaches. Int. J. Solids Struct. 45, 4147–4172 (2008)

    Article  MATH  Google Scholar 

  11. Bittencourt, E., Needleman, A., ME, G., Van der Giessen, E.: A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Busso, E., Meissonnier, F., O’Dowd, N.: Gradient-dependent deformation of two-phase single crystals. J. Mech. Phys. Solids 48, 2333–2361 (2000)

    Article  MATH  Google Scholar 

  13. Chang, H.J., Gaubert, A., Fivel, M., Berbenni, S., Bouaziz, O., Forest, S.: Analysis of particle induced dislocation structures using three-dimensional dislocation dynamics and strain gradient plasticity. Comput. Mater. Sci. 52, 33–39 (2012)

    Article  Google Scholar 

  14. Chokshi, A., Rosen, A., Karch, J., Gleiter, H.: On the validity of the Hall–Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1683 (1989)

    Article  Google Scholar 

  15. Chou, Y., Li, J.: Theory of dislocation pile-ups. In: Mura, T. (ed.) Mathematical Theory of Dislocations, pp. 116–177. ASME, New York (1969)

    Google Scholar 

  16. Cleveringa, H., Van der Giessen, E., Needleman, A.: Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater. 45, 3163–3179 (1997)

    Article  Google Scholar 

  17. Cleveringa, H., Van der Giessen, E., Needleman, A.: Discrete dislocation simulations and size dependent hardening in single slip. J. Phys. IV 8, Pr4-83–Pr4-92 (1998)

    Google Scholar 

  18. Cleveringa, H., Van der Giessen, E., Needleman, A.: A discrete dislocation analysis of residual stresses in a composite material. Philos. Mag. A 79, 863–920 (1999)

    Article  Google Scholar 

  19. Collard, C., Favier, V., Berbenni, S., Berveiller, M.: Role of discrete intra-granular slip bands on the strain-hardening of polycrystals. Int. J. Plast. 26, 310–328 (2010)

    Article  MATH  Google Scholar 

  20. Cordero, N.M., Gaubert, A., Forest, S., Busso, E., Gallerneau, F., Kruch, S.: Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cordero, N.M., Forest, S., Busso, E.P.: Generalised continuum modelling of grain size effects in polycrystals. C. R. Mec. 340, 261–274 (2012a)

    Article  Google Scholar 

  22. Cordero, N.M., Forest, S., Busso, E.P., Berbenni, S., Cherkaoui, M.: Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Comput. Mater. Sci. 52, 7–13 (2012b)

    Article  Google Scholar 

  23. Déprés, C.: Modélisation physique des stades précurseurs de l’endommagement en fatigue dans l’acier inoxydable 316L. Ph.D. thesis, Grenoble INP, France (2004)

  24. Déprés, C., Robertson, C., Fivel, M.: Low-strain fatigue in 316l steel surface grains: a three-dimensional discrete dislocation dynamics modeling of the early cycles. Philos. Mag. 84, 2257–2275 (2004)

    Article  Google Scholar 

  25. Déprés, C., Reddy, G., Robertson, C., Fivel, M.: An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation. Philos. Mag. 94, 4115–4137 (2014)

    Article  Google Scholar 

  26. Eshelby, J., Frank, F., Nabarro, F.: The equilibrium of linear arrays of dislocations. Philos. Mag. 7, 351–364 (1951)

    Article  MathSciNet  Google Scholar 

  27. Déprés, C., Fivel, M.: An easy implementation of displacement calculations in 3D discrete dislocation dynamics codes. Philos. Mag. 94, 3206–3214 (2014)

    Article  Google Scholar 

  28. Fivel, M., Tabourot, L., Rauch, E., Canova, G.: Identification through mesoscopic simulations of macroscopic parameters of physically based constitutive equations for the plastic behaviour of fcc single crystals. J. Phys. IV 8, 151–158 (1998)

    Google Scholar 

  29. Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fleck, N., Hutchinson, J.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  31. Forest, S.: Questioning size effects as predicted by strain gradient plasticity. J. Mech. Behav. Mater. 22, 101–110 (2013)

    Article  Google Scholar 

  32. Forest, S., Guéninchault, N.: Inspection of free energy functions in gradient crystal plasticity. Acta. Mech. Sin. 29, 763–772 (2013)

    Article  MathSciNet  Google Scholar 

  33. Forest, S., Sedláček, R.: Plastic slip distribution in two-phase laminate microstructures: dislocation-based vs. generalized-continuum approaches. Philos. Mag. A 83, 245–276 (2003)

    Article  Google Scholar 

  34. Gao, H., Huang, Y., Nix, W., Hutchinson, J.: Mechanism-based strain gradient plasticity—I. theory. J. Mech. Phys. Solids 47, 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Geers, M., Peerlings, R., Peletier, M., Scardia, L.: Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ghoniem, N., Sun, L.: Fast-sum method for the elastic field of three-dimensional dislocation ensembles. Phys. Rev. B 60, 128–140 (1999)

    Article  Google Scholar 

  37. Gurtin, M.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gurtin, M.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hall, E.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747–753 (1951)

    Article  Google Scholar 

  40. Herzer, G.: Nanocrystalline soft-magnetic materials. Phys. Scr. T49A, 307–314 (1993)

    Article  Google Scholar 

  41. Kim, G., Fivel, M., Lee, H.J., Shin, C., Han, H., Chang, H., Oh, K.: A discrete dislocation dynamics modeling for thermal fatigue of preferred oriented copper via patterns. Scr. Mater. 63, 788–791 (2010)

    Article  Google Scholar 

  42. Kochmann, D., Le, K.: Dislocation pile-ups in bicrystals within continuum dislocation theory. Int. J. Plast. 24, 2125–2147 (2008)

    Article  MATH  Google Scholar 

  43. Kooiman, M., Hütter, M., Geers, M.: Microscopically derived free energy of dislocations. J. Mech. Phys. Solids 78, 186–209 (2015)

    Article  MathSciNet  Google Scholar 

  44. Kubin, L., Canova, G., Condat, M., Devincre, B., Pontikis, V., Bréchet, Y.: Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom. 23 & 24, 455–472 (1992)

    Article  Google Scholar 

  45. Lefebvre, S., Devincre, B., Hoc, T.: Yield stress strengthening in ultrafine-grained metals: a two-dimensional simulation of dislocation dynamics. J. Mech. Phys. Solids 55, 788–802 (2007)

    Article  MATH  Google Scholar 

  46. Madec, R., Devincre, B., Kubin, L., Hoc, T., Rodney, D.: The role of collinear interaction in dislocation-induced hardening. Science 301, 1879–1882 (2003)

    Article  Google Scholar 

  47. Mesarovic, S., Baskaran, R., Panchenko, A.: Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58, 311–329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mesarovic, S., Forest, S., Jaric, J.: Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471(20140), 868 (2015)

    MathSciNet  Google Scholar 

  49. Mughrabi, H.: Dislocation wall and cell structures and long-rang internal stresses in deformed metal crystals. Acta Metall. 31, 1367–1379 (1983)

    Article  Google Scholar 

  50. Nye, J.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  51. Ohno, N., Okumura, D.: Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ortiz, M., Repetto, E., Stainier, L.: A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48, 2077–2114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Petch, N.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)

    Google Scholar 

  54. Richeton, T., Berbenni, S.: Effect of heterogeneous elasticity coupled to plasticity on stresses and lattice rotation in bicrystals: a Field Dislocation Mechanics viewpoint. Eur. J. Mech. A Solids 37, 231–247 (2013)

    Article  MathSciNet  Google Scholar 

  55. Roy, A., Acharya, A.: Finite element approximation of field dislocation mechanics. J. Mech. Phys. Solids 53, 143–170 (2005)

    Article  MATH  Google Scholar 

  56. Scardia, L., Peerlings, R., Peletier, M., Geers, M.: Mechanics of dislocation pile-ups: a unification of scaling regimes. J. Mech. Phys. Solids 70, 42–61 (2014)

    Article  MathSciNet  Google Scholar 

  57. Schwartz, K.: Simulation of dislocations on the mesoscale: I. Methods and example. J. Appl. Phys. 85, 108–119 (1999)

    Article  Google Scholar 

  58. Scouwenaars, R., Seefeldt, M., Houtte, P.: The stress field of an array of parallel dislocation pile-ups: implications for grain boundary hardening and excess dislocation distributions. Acta Mater. 58, 4344–4353 (2010)

    Article  Google Scholar 

  59. Shin, C.S., Fivel, M.C., Verdier, M., Oh, K.H.: Dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos. Mag. 83, 3691–3704 (2003)

    Article  Google Scholar 

  60. Shu, J., Fleck, N., Van der Giessen, E., Needleman, A.: Boundary layers in constrained plastic flow: comparison of non local and discrete dislocation plasticity. J. Mech. Phys. Solids 49, 1361–1395 (2001)

    Article  MATH  Google Scholar 

  61. Šiška, F., Weygand, D., Forest, S., Gumbsch, P.: Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity. Comput. Mater. Sci. 45, 793–799 (2009)

    Article  Google Scholar 

  62. Svendsen, B.: Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J. Mech. Phys. Solids 50, 1297–1329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. Taupin, V., Berbenni, S., Fressengeas, C., Bouaziz, O.: On particle size effects: an internal length mean field approach using field dislocation mechanics. Acta Mater. 58, 5532–5544 (2010)

    Article  Google Scholar 

  64. Taupin, V., Berbenni, S., Fressengeas, C.: Size effects on the hardening of channel-type microstructures: a field dislocation mechanics-based approach. Acta Mater. 60, 664–673 (2012)

    Article  Google Scholar 

  65. Upadhyay, M., Capolungo, L., Taupin, V., Fressengeas, C.: Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations. Philos. Mag. 93, 794–832 (2012)

    Article  Google Scholar 

  66. Weygand, D., Friedman, L., Van der Giessen, E., Needleman, A.: Discrete dislocation modeling in three-dimensional confined volumes. Mater. Sci. Eng. A 309–310, 420–424 (2001)

    Article  Google Scholar 

  67. Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A 468, 2682–2703 (2012)

    Article  Google Scholar 

  68. Wulfinghoff, S., Bayerschen, E., Böhlke, T.: A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)

    Article  Google Scholar 

  69. Wulfinghoff, S., Forest, S., Böhlke, T.: Logarithmic and rank-one defect energies in gradient crystal plasticity analytical and numerical 1D solutions. J. Mech. Phys. Solids 79, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  70. Yefimov, S., Van der Giessen, E.: Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations. Int. J. Solids Struct. 42, 3375–3394 (2005)

    Article  MATH  Google Scholar 

  71. Yefimov, S., Groma, I., Van der Giessen, E.: A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zbib, H., Rhee, M., Hirth, J.: On plastic deformation and the dynamics of 3D dislocations. Int. J. Mech. Sci. 40, 113–127 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was carried out under Project ANR-07-MAPR- 0023-04 CAT-SIZE Matériaux et Procédés. Financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HJ., Cordero, N.M., Déprés, C. et al. Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. Arch Appl Mech 86, 21–38 (2016). https://doi.org/10.1007/s00419-015-1099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1099-z

Keywords

Navigation