Skip to main content
Log in

A boundary modulation formulation for cable’s non-planar coupled dynamics under out-of-plane support motion

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Suspended cable’s non-planar resonant coupled dynamics under out-of-plane support motion is investigated by the multiple- scale method, with a boundary modulation formulation established and nonlinear dynamic responses analyzed. Explicitly, to cope with the difficulty due to moving boundary, the small resonant support motion is properly rescaled and incorporated into cable’s modulation equations as a boundary resonant modulation term, through constructing solvability conditions of the multi-scale expansions. And the boundary resonance dynamic coefficient, characterizing the boundary modulation effect, is derived analytically for cable’s two-to-one resonant coupled dynamics. Numerical results for cable’s non-planar coupled dynamic responses, including stability and bifurcation analysis for the equilibrium solutions of modulation equations, are obtained and presented in the end, with both saddle-node bifurcations and Hopf bifurcations detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rega, G.: Nonlinear vibrations of suspended cables–part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Ibrahim, R.A.: Nonlinear vibrations of suspended cables–part III: Random excitation and interaction with fluid flow. Appl. Mech. Rev. 57, 515–549 (2004)

    Article  Google Scholar 

  3. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, pp. 299–315 (1974)

  4. Irvine, H.M.: Cable Structures. Dover Publications, New York (1992)

    Google Scholar 

  5. Triantafyllou, M.: Dynamics of cables, towing cables and mooring systems. Shock Vib. Digest 23, 3–8 (1991)

    Article  Google Scholar 

  6. Jin, D., Wen, H., Hu, H.: Modeling, dynamics and control of cable systems. Adv. Mech. 34, 304–313 (2004)

    Google Scholar 

  7. Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Eng. 193, 69–85 (2004)

    Article  MATH  Google Scholar 

  8. Hagedorn, P., Schäfer, B.: On non-linear free vibrations of an elastic cable. Int. J. Non Linear Mech. 15, 333–340 (1980)

    Article  MATH  Google Scholar 

  9. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non Linear Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  10. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non Linear Mech. 22, 497–509 (1987)

    Article  MATH  Google Scholar 

  11. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non Linear Mech. 27, 233–250 (1992)

    Article  MATH  Google Scholar 

  12. Lee, C., Perkins, N.C.: Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dyn. 8, 45–63 (1995)

    MathSciNet  Google Scholar 

  13. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: Theoretical formulation and model validation. Nonlinear Dyn. 48, 231–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pakdemirli, M., Nayfeh, S., Nayfeh, A.: Analysis of one-to-one autoparametric resonances in cables—discretization vs. direct treatment. In: Advances in Nonlinear Dynamics: Methods and Applications, Springer, New York, pp. 65–83 (1995)

  15. Zhao, Y., Wang, L., Chen, D., Jiang, L.: Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable. J. Sound Vib. 255, 43–59 (2002)

    Article  Google Scholar 

  16. Lacarbonara, W., Rega, G., Nayfeh, A.: Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non Linear Mech. 38, 851–872 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, Y., Wang, L.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294, 1073–1093 (2006)

    Article  Google Scholar 

  18. Nayfeh, A.H., Arafat, H.N., Chin, C.-M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rega, G., Lacarbonara, W., Nayfeh, A., Chin, C.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non Linear Mech. 34, 901–924 (1999)

    Article  MATH  Google Scholar 

  20. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)

    Article  Google Scholar 

  21. Cai, Y., Chen, S.: Dynamics of elastic cable under parametric and external resonances. J. Eng. Mech. 120, 1786–1802 (1994)

    Article  Google Scholar 

  22. Lilien, J.-L., Da Costa, A.P.: Vibration amplitudes caused by parametric excitation of cable stayed structures. J. Sound Vib. 174, 69–90 (1994)

    Article  MATH  Google Scholar 

  23. Costa, APd, Martins, J., Branco, F., Lilien, J.-L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech. 122, 613–622 (1996)

    Article  Google Scholar 

  24. El-Attar, M., Ghobarah, A., Aziz, T.: Non-linear cable response to multiple support periodic excitation. Eng. Struct. 22, 1301–1312 (2000)

    Article  Google Scholar 

  25. Georgakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 281, 537–564 (2005)

    Article  Google Scholar 

  26. Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

  27. Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  28. Géradin, M., Rixen, D.J.: Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley, New York (2014)

    Google Scholar 

  29. Pakdemirli, M., Boyaci, H.: Comparison of direct-perturbation methods with discretization-perturbation methods for non-linear vibrations. J. Sound Vib. 186, 837–845 (1995)

    Article  MATH  Google Scholar 

  30. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shaw, S.W., Pierre, C.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 169, 319–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  33. Pakdemirli, M., Boyaci, H.: Effect of non-ideal boundary conditions on the vibrations of continuous systems. J. Sound Vib. 249, 815–823 (2002)

    Article  Google Scholar 

  34. Boyaci, H.: Vibrations of stretched damped beams under non-ideal boundary conditions. Sadhana 31, 1–8 (2006)

    Article  MATH  Google Scholar 

  35. Nayfeh, A.H.: Introduction to perturbation techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  36. Guo, T.D., Kang, H.J., Wang, L.L., Zhao, Y.Y.: Cable’s mode interactions under vertical support motions: boundary resonant modulation. Nonlinear Dyn. under review (2015)

  37. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2009)

    MATH  Google Scholar 

  38. Chen, L.-Q., Zhang, Y.-L., Zhang, G.-C., Ding, H.: Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int. J. Non Linear Mech. 58, 11–21 (2014)

    Article  Google Scholar 

  39. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This study is funded by the Supporting Program for Young Investigators, Hunan University. And it is also supported by National Science Foundation of China under Grant No.11102063 and No.11032004. All possible interesting comments and criticism by reviewers are welcome and gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Appendix

Appendix

Suspended cable’s linear modal analysis can be found in reference [3]. The in-plane symmetric modes are given by

$$\begin{aligned} \phi _n \left( x \right) =c_n \left[ {1-\tan \left( {\frac{ \omega _n^{\left( \mathrm{in} \right) } }{2}} \right) \sin \omega _n^{\left( \mathrm{in} \right) } x-\cos \omega _n^{\left( \mathrm{in} \right) } x} \right] ,\quad n=1,3,5\ldots \end{aligned}$$
(40)

where \(c_{i}\) is the normalization constants. And the associated eigenfrequencies are determined by

$$\begin{aligned} \frac{1}{2}\omega _n^{\left( \mathrm{in} \right) } -\tan \left( {\frac{1}{2}\omega _n^{\left( \mathrm{in} \right) } } \right) -\frac{1}{2\lambda ^{2}}\left( {\omega _n^{\left( \mathrm{in} \right) } } \right) ^{3}=0,\quad n=1,3,5\ldots \end{aligned}$$
(41)

where \(\lambda ^{2}={EA}/{mgl}(8b/l)^{3}\) is the elasto-geometric parameter. The above nonlinear transcendental equations can be solved by the Newton–Raphson method.

The in-plane antisymmetric modes are

$$\begin{aligned} \phi _n \left( x \right) =\sqrt{2}\sin \left( {n\pi x} \right) ,\quad n=2,4,6\ldots \end{aligned}$$
(42)

with the associated eigenfrequencies as

$$\begin{aligned} \omega _n^{\left( \mathrm{in} \right) } =n\pi ,\quad n=2,4,6\ldots \end{aligned}$$
(43)

And the out-of-plane modes are

$$\begin{aligned} \varphi _m \left( x \right) =\sqrt{2}\sin \left( {m\pi x} \right) ,\quad m=1,2,3,\ldots \end{aligned}$$
(44)

with the associated eigenfrequencies as

$$\begin{aligned} \omega _m^{\left( \mathrm{out} \right) } =m\pi ,\quad m=1,2,3\ldots \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Kang, H., Wang, L. et al. A boundary modulation formulation for cable’s non-planar coupled dynamics under out-of-plane support motion. Arch Appl Mech 86, 729–741 (2016). https://doi.org/10.1007/s00419-015-1058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1058-8

Keywords

Navigation