Skip to main content
Log in

Wake–cylinder interactions of a hinged cylinder at low and intermediate Reynolds numbers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study and classification of vortex-induced oscillation and the wake structure of flow past finite cylinders. Experiments were performed in a water tunnel using cylindrical particles hinged in the center of the test section while allowing them one degree of rotational freedom. The speed of flow and aspect ratio of the cylinders were used to vary the Reynolds number in the study between 100 and 5000. The cylinders display different responses to the fluid flow depending upon the Re, ranging from steady orientation, periodic oscillation to autorotation. A hydrogen bubble flow visualization technique was used to examine the vortex structure and supported by image analysis techniques. Specific features of the wake structure such as length of the primary vortex, its frequency and amplitude were analyzed as a function of Re. Our investigations indicate that the frequency of oscillation of the cylinder and the vortex shedding increases monotonically with the Reynolds number. Also, the length of the primary vortex versus Re shows interesting features and reveals possible critical points in the flow when vortex structure changes. In order to better understand qualitative aspects of the cylinder’s dynamics that go beyond experiments, a simplistic forced nonlinear pendulum toy model was employed and seen to capture qualitative aspects of the cylinder’s dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The characteristic length of the cylinder is taken to be its length (l).

  2. Cylinders of aspect ratio \(>\)1 oscillate around a different equilibrium from those with aspect ratio \(<\)1. If these aspect ratios were being considered in isolation, we would use the equilibrium configuration length to be equal to the characteristic length (i.e., for \(AR>1\), the characteristic length would be l, and for \(AR<1\), the characteristic length would equal the diameter d). However, since this current paper compares different aspect ratios, we feel it is meaningful to fix the characteristic length for all cylinders to be l.

  3. The bifurcation diagram , Fig. 5, only shows \(I^*\) up to a value of 0.5. For the case of \(I^*=0.62\), by extrapolation, we can expect the critical Reynolds number to lie close to 1500.

  4. Non-oscillation describes the critical behavior as the pendulum ascends to the maximum position and displays rotations with no reverse motion.

  5. This approximation at best delays the onset of critical phenomena, but otherwise does not change the physics of the problem being discussed here

  6. The non-dimensional time parameter in \(\alpha \) is computed by two means: a constant \(T_1=\frac{1}{\text {max}(\omega _0)}\) and also \(T_2=\frac{1}{\omega _0}\). In Table 2, we display only the second case of non-dimensionalization by \(T_2\).

References

  1. Albare‘de, P., Monkewitz, P.A.: A model for the formation of oblique shedding and chevron patterns in cylinder wakes. Phys. Fluids A 4, 744 (1992)

    Article  Google Scholar 

  2. Belmonte, A., Eisenberg, H., Moses, E.: From flutter to tumble: inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81(2), 345–349 (1998)

    Article  Google Scholar 

  3. Camassa, R., Chung, B.J., Howard, P., McLaughlin, R.M., Vaidya, A.: Vortex induced oscillations of cylinders at low and intermediate Reynolds numbers. In: Sequeira, A., Rannacher, R. (eds.) Advanced in Mathematical Fluid Mechanics, pp. 135–145. Springer, Berlin (2010)

    Chapter  Google Scholar 

  4. Camassa, R., Chung, B.J., Howard, P., McLaughlin, R.M., Vaidya, A.: Slender body in a quiescent polymer solution. Rheol. Acta 25, 380–388 (1986)

    Article  Google Scholar 

  5. Chung, B.J., Gipson, G., Shenoy, A., Vaidya, A.: Image analysis of wake structure past cylinders of finite lengths. Int. J. Imaging A 10(4), 18–32 (2010)

    Google Scholar 

  6. Clayton, B.R., Massey, B.S.: Flow visualization in water: a review of techniques. J. Sci. Intrum. 44, 2–11 (1967)

    Article  Google Scholar 

  7. Cox, R.G.: The steady motion of a particle of arbitrary shape at small Reynolds number. J. Fluid Mech. 23(4), 625–643 (1965)

    Article  Google Scholar 

  8. Ern, P., Risso, F., Fabre, D., Magnaudet, J.: Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Ann. Rev. Fluid Mech. 44(1), 97121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Field, S.B., Klaus, M., Moore, M.G., Nori, F.: Chaotic dynamics of falling disks. Nature 388, 252–254 (1997)

    Article  Google Scholar 

  10. Galdi, G.P., Vaidya, A., Pokorny, M., Joseph, D.D., Feng, J.: Orientation of bodies sedimenting in a second-order liquid at non-zero Reynolds number. Math. Models Methods Appl. Sci. 12(11), 1653–1690 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galdi, G.P., Vaidya, A.: Translational steady fall of symmetric bodies in Navier-Stokes liquid, with application to particle sedimentation. J. Math. Fluid Mech. 3, 183–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galdi, G.P.: On the Motion of a Rigid Body in a Viscous Fluid: A Mathematical Analysis with Applications, Handbook of Mathematical Fluid Mechanics. Elsevier Science, Amsterdam (2002)

    MATH  Google Scholar 

  13. Griffin, O.M., Skop, R.A., Koopman, G.H.: Measurements of the response of bluff cylinders to flow-induced vortex shedding, Offshore Technology Conference, Dallas, Texas, Paper OTC 1814, (1973)

  14. Griffin, O.M., Ramberg, S.E.: The vortex street wakes of vibrating cylinders. J. Fluid Mech. 66, 553576 (1974)

    Article  Google Scholar 

  15. Hirsch, P.: Uber die Bewegung von Kugeln in ruhenden Flussigkeiten. Z. Angew. Math. Mech. 3, 93107 (1923)

    Article  MATH  Google Scholar 

  16. Horowitz, M., Williamson, C.H.K.: The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251294 (2010)

    Article  MATH  Google Scholar 

  17. Horowitz, M., Williamson, C.H.K.: Vortex-induced vibration of a rising and falling cylinder. J. Fluid Mech. 662, 352–383 (2010)

    Article  MATH  Google Scholar 

  18. http://ecommons.library.cornell.edu/handle/1813/11484/

  19. Hu, H.H., Joseph, D.D., Fortes, A.F.: Experiments and direct simulations of fluid particle motions. Int. Video J. Eng. Res. 2, 17–24 (1992)

    Google Scholar 

  20. Hu, H.H., Joseph, D.D., Fortes, A.F.: Falling in a viscoelastic fluid. J. Rheol. 37, 961–983 (1993)

    Article  MathSciNet  Google Scholar 

  21. Kline, S.J.: Flow visualization. National committee for fluid mechanics films—film notes, No. 21607, p. 5

  22. Leal, L.G.: Particle motion in a viscous fluid. Ann. Rev. Fluid Mech. 12, 435–476 (1980)

    Article  MathSciNet  Google Scholar 

  23. Leal, L.G.: The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69, 305–337 (1975)

    Article  MATH  Google Scholar 

  24. Lima, F.M.S.: Analytical study of the critical behavior of the nonlinear pendulum. Am. J. Phys. 78(11), 1146–1151 (2010)

    Article  MathSciNet  Google Scholar 

  25. Lima, F.M.S.: Polymer solutions. J. Fluid Mech. 255, 565–595 (1993)

    Article  Google Scholar 

  26. Lugt, H.: Autorotation of an elliptic cylinder about an axis perpendicular to the flow. J. Fluid Mech. 99, 817–840 (1980)

    Article  Google Scholar 

  27. Lugt, H.: Autorotation. Ann. Rev. Fluid Mech. 15, 123–147 (1983)

    Article  MATH  Google Scholar 

  28. Mittal, R., Seshadri, V., Udaykumar, H.S.: Flutter, tumble and vortex induced oscillations. Theor. Comput. Fluid Dyn. 17, 165–170 (2004)

    Article  MATH  Google Scholar 

  29. Newton, I.: 1726, Philosophia Naturalis Principia Mathematica, 3rd edn, (trans Cohen I.B., Whitman A.). University of California Press (1999)

  30. Ochs, K.: A comprehensive analytical solution of the nonlinear pendulum. Eur. J. Phys. 32(2), 479490 (2011)

    Article  MATH  Google Scholar 

  31. Pan, T.W., Glowinski, R., Galdi, G.P.: Direct simulation of a settling ellipsoid in a Newtonian fluid. J. Comput. Appl. Math. 149, 71–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sakamoto, H., Haniu, H.: A study of vortex shedding from spheres in uniform flow. J. Fluids Eng. 112, 386–392 (1990)

    Article  Google Scholar 

  33. Schmidt, F.S.: Zur beschleunigten Bewegung kugelformiger Korper in widerstehenden Mitteln. J. Fluid Mech. 61, 633663 (1920)

    Google Scholar 

  34. Schmiedel, J.: Experimentelle Untersuchungen uber die Fallbewegung von Kugeln und Scheiben in reibenden Flussigkeiten. Physik. Zeit. 17, 593610 (1928)

    Google Scholar 

  35. Spanier, J., Oldham, K.B.: The complete elliptic integrals K(p) and E(p) and the incomplete elliptic integrals F(p;phi) and E(p;phi). Chs. 61–62 in An Atlas of Functions. Washington: Hemisphere, pp. 609–633, (1987)

  36. Stringham, G.E., Simons, D.B., Guy, H.P.: The behavior of large particles falling in quiescent liquids. Prof. Pap. US Geol. Surv., 562-C (1969)

  37. Tanabe, Y., Kaneko, K.: Behavior of falling paper. Phys. Rev. Lett. 73(10), 1372–1376 (1994)

    Article  Google Scholar 

  38. Vaidya, A.: Slow, steady, freefall of bodies of arbitrary shape in a second order fluid at zero Reynolds number. Jpn. J. Ind. Appl. Math. 72, 299–321 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vaidya, A.: A note on the terminal orientation of symmetric bodies in a power-law fluid. Appl. Math. Lett. 18, 1332–1338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Williamson, C.H.K., Goverdhan, R.: Vortex-induced vibrations. Ann. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  42. Willmarth, W.W., Hawk, N.E., Galloway, A.J., Roos, F.W.: J. Fluid Mech. 27(1), 177–207 (1967)

    Article  Google Scholar 

  43. Willmarth, W.W., Hawk, N.E., Harvey, R.L.: Phys. Fluids 7, 197208 (1964)

    Google Scholar 

  44. Zdravkovich, M.M.: Different modes of vortex shedding: an overview. J. Fluids Struct. 10, 427–437 (1996)

    Article  Google Scholar 

  45. Zdravkovich, M.M.: Flow Around Circular Cylinders Volume 1: Fundamentals. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  46. Zdravkovich, M.M.: Flow Around Circular Cylinders Volume 2 Applications. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  47. Zwillinger, D.: Handbook of Differential Equations, 3rd edn, p. 122. Academic Press, Boston, MA (1997)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the help of several folks in this project. Among them, Greg Gipson, Danny Barry, Dr. Roberto Camassa, Dr. Eric Forgoston and Dr. Richard McLaughlin are acknowledged for their help and support. Part of this work was supported by the Science Honors Innovation Program (SHIP) at Montclair State University and by the National Science Foundation under Grant No. 1229113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vaidya.

Appendix: Parameter values chosen to solve Eq. (13)

Appendix: Parameter values chosen to solve Eq. (13)

See Table 2.

Table 2 This table presents a comparison of theoretical and experimental result in the estimation of frequency of oscillation of the cylinder as a function of the Reynolds number and cylinder’s aspect ratio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, B., Cohrs, M., Ernst, W. et al. Wake–cylinder interactions of a hinged cylinder at low and intermediate Reynolds numbers. Arch Appl Mech 86, 627–641 (2016). https://doi.org/10.1007/s00419-015-1051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1051-2

Keywords

Navigation